CS369G: Algorithmic Techniques for Big Data

Spring 2015-2016

Lecture 10: Priority and l_0 -Sampling

Prof. Moses Charikar Scribes: Qingyun Sun

1 Overview

This lecture introduces Priority and l_0 -Sampling: Priority sampling is the problem that given a data stream of items with weights w_1, \ldots, w_n , we want to store a representative sample of the items so that we can answer subset sum queries. That is, given a set $I \subset [n]$, we would like to answer queries about the value $\sum_{i \in I} w_i$. Then we introduce l_0 -Sampling using ideas from linear sketching and sparse recovery.

2 Priority Sampling

Problem: given a data stream of items with weights w_1, \ldots, w_n , we want to store a representative sample S of the items so that we can answer subset sum queries. That is, given a query $I \subset [n]$, we would like to approximate $W_I = \sum_{i \in I} w_i$.

One scheme is the following:

- 1. For data w_1, \ldots, w_n , we sample $u_i \in [0, 1]$ uniformly at random and independently.
- 2. We compute the priorities $q_i = w_i/u_i$ for each $i \in [n]$.
- 3. We always keep the set of items S_k containing the k-largest priorities seen so far, as well as τ the value of the (k + 1)-largest priority.
- 4. Given a query $I \subset [n]$, we output $\hat{W}_I = \sum_{j \in I \cap S_k} \max\{\tau, w_j\}$.

This scheme has strong optimality guarantees.

2.1 Analysis

For convenience in the analysis we define a different set of weights through $w_i = \begin{cases} \max\{\tau, w_i\} & \text{if } i \in S_k \\ 0 & \text{otherwise} \end{cases}$ Then, the output of the algorithm is equivalent to $\hat{W}_I = \sum_{i \in I} \hat{w}_i$.

We want to prove the following two results.

Lemma 1. $\mathbb{E}[\hat{w}_i] = w_i$.

Proof. Let $A(\tau')$ be the event that the (k+1)-th highest priority is τ' , then for all $i \in S$, we must have that $q_i = w_i/u_i > \tau'$, and the corresponding weight is $\hat{w}_i = max(\tau', w_i)$, otherwise for $i \notin S$ $q_i \leq \tau'$ and $\hat{w}_i = 0$. Let's look at $\mathbb{P}(i \in S | A(\tau'))$. We distinguish two cases:

1.
$$w_i > \tau'$$
: then $\mathbb{P}(i \in S_k | A(\tau')) = 1$ and $\hat{w}_i = w_i$.
2. $w_i \leq \tau'$: then $\mathbb{P}(i \in S_k | A(\tau')) = \mathbb{P}(u_i \leq \frac{w_i}{\tau'}) = \frac{w_i}{\tau'}$ and $\hat{w}_i = \tau'$.

In both cases $\mathbb{E}[\hat{w}_i] = w_i$.

Lemma 2. $\mathbb{E}[\prod_{S} \hat{w}_i] = \prod_{S} w_i, |S| \le k, Var(\sum_{I} \hat{w}_i) = \sum_{I} Var(\hat{w}_i).$

Proof. Proof left to the readers.

3 ℓ_0 -Sampling

Problem: given a vector (a_1, \ldots, a_n) , we want to sample a random element $I \in [n]$ of the vector such that $\mathbb{P}(I = i) = \frac{|a_i|^p}{\sum |a_j|^p}$. This is called ℓ_p -sampling.

We have seen examples of ℓ_p -sampling in the streaming setting. For example, reservoir sampling is ℓ_1 - sampling with only positive update. In general though, we relax our requirements and we are content if we can sample *i* with probability $(1 + \epsilon) \frac{|a_i|^p}{\sum |a_j|^p} \pm \delta$ for some $\epsilon, \delta > 0$.

 ℓ_0 -sampling means that we are sampling near-uniformly from the distinct elements in the stream.

3.1 Algorithm

We use ideas from linear sketch and sparse recovery. We assume that given an $x \in \mathbb{R}^n$, we can use a linear sketch y = Ax to compute z such that $||x - z||_p \leq C||x - x^*||_p$. Observe, if x had few non-zero coordinates, zrecovers x exactly. We are going to exploit this fact to perform ℓ_0 -sampling.

We use the following scheme: pick a nest of random subsets I_h of the index of x with size $n, n/2, \ldots, n/2^r$, for some $r \leq log(n)$. To perform the sampling efficiently, we use a k-wise independent hash function: $h: [n] \rightarrow [n^3]$.

The procure is the following:

1. Sampling:

if
$$h(i) \le n^3/2^j$$
, then $a(j)_i = a_i$

2. Recovery:

run sparse recovery algorithm on x restricted to subset I_h . If any of the sparse-recoveries succeeds then output a s-sparse vector for $s = O(\log(1/\delta))$. Algorithm fails if none of the sparse-recoveries output a valid vector

3. Selection:

pick a level j that has successful recovery, and output the index i of the smallest hash value h(i). We can understand this as output a random coordinate from the first sparse recovery that succeeds.

3.2 Analysis of the scheme

We define $N_j = ||a(j)||_0$ as the number of non-zero coordinates. Then $s/4 \leq \mathbb{E}[N_j] \leq s/2$. We have the inequality

$$\mathbb{P}(|N_j - \mathbb{E}[N_j]| \le \mathbb{E}[N_j]) \le \mathbb{P}(1 \le N_j \le 2\mathbb{E}[N_j]) \le \mathbb{P}(1 \le N_j \le s),$$

and since $k \ge r\mathbb{E}[N_j]$, we have a Chernoff bound-like result for sum of k-wise independent [0, 1] variables,

$$P(|N_j - \mathbb{E}[N_j]| \le r \mathbb{E}[N_j]) \le e^{-r \mathbb{E}[N_j]/3}$$

Since $\mathbb{E}[N_j] \ge s/4$, if we set $s = 12 \log(1/\delta)$, the failure probability $P[N_j > s]$ is less than $\delta = e^{-s/12}$.

References

[1] Nick Duffield, Carsten Lund, and Mikkel Thorup. Priority sampling for estimation of arbitrary subset sums. *Journal of ACM*, 31(2), 54(6):32, 2007.