
CS369G: Algorithmic Techniques for Big Data Spring 2015-2016

Lecture10: Priority and l0-Sampling

Prof. Moses Charikar Scribes: Qingyun Sun

1 Overview

This lecture introduces Priority and l0-Sampling: Priority sampling is the problem that given a
data stream of items with weights w1, . . . , wn, we want to store a representative sample of the items
so that we can answer subset sum queries. That is, given a set I ⊂ [n], we would like to answer

queries about the value
∑
i∈I

wi. Then we introduce l0-Sampling using ideas from linear sketching

and sparse recovery.

2 Priority Sampling

Problem: given a data stream of items with weights w1, . . . , wn, we want to store a representative
sample S of the items so that we can answer subset sum queries. That is, given a query I ⊂ [n],

we would like to approximate WI =
∑
i∈I

wi.

One scheme is the following:

1. For data w1, . . . , wn, we sample ui ∈ [0, 1] uniformly at random and independently.

2. We compute the priorities qi = wi/ui for each i ∈ [n].

3. We always keep the set of items Sk containing the k-largest priorities seen so far, as well as
τ the value of the (k + 1)-largest priority.

4. Given a query I ⊂ [n], we output ŴI =
∑

j∈I∩Sk

max{τ, wj}.

This scheme has strong optimality guarantees.

2.1 Analysis

For convenience in the analysis we define a different set of weights through wi =

{
max{τ, wi} if i ∈ Sk

0 otherwise
.

Then, the output of the algorithm is equivalent to ŴI =
∑
j∈I

ŵj .

We want to prove the following two results.

Lemma 1. E[ŵi] = wi.

1

Proof. Let A(τ ′) be the event that the (k + 1)-th highest priority is τ ′, then for all i ∈ S, we must
have that qi = wi/ui > τ ′, and the corresponding weight is ŵi = max(τ ′, wi), otherwise for i /∈ S
qi ≤ τ

′
and ŵi = 0. Let’s look at P(i ∈ S|A(τ ′)). We distinguish two cases:

1. wi > τ
′
: then P(i ∈ Sk|A(τ

′
)) = 1 and ŵi = wi.

2. wi ≤ τ
′
: then P(i ∈ Sk|A(τ

′
)) = P(ui ≤

wi

τ ′) =
wi

τ ′ and ŵi = τ
′
.

In both cases E[ŵi] = wi.

Lemma 2. E[
∏
S

ŵi] =
∏
S

wi, |S| ≤ k, V ar(
∑
I

ŵi) =
∑
I

V ar(ŵi).

Proof. Proof left to the readers.

3 `0-Sampling

Problem: given a vector (a1, . . . , an), we want to sample a random element I ∈ [n] of the vector

such that P(I = i) =
|ai|p∑
|aj |p

. This is called `p-sampling.

We have seen examples of `p-sampling in the streaming setting. For example, reservoir sampling is
`1− sampling with only positive update. In general though, we relax our requirements and we are

content if we can sample i with probability (1 + ε)
|ai|p∑
|aj |p

± δ for some ε, δ > 0.

`0-sampling means that we are sampling near-uniformly from the distinct elements in the stream.

3.1 Algorithm

We use ideas from linear sketch and sparse recovery. We assume that given an x ∈ Rn, we can
use a linear sketch y = Ax to compute z such that ||x− z||p ≤ C||x− x∗||p. Observe, if x had few
non-zero coordinates, zrecovers x exactly. We are going to exploit this fact to perform `0-sampling.

We use the following scheme: pick a nest of random subsets Ih of the index of xwith size n, n/2, . . . , n/2r,
for some r ≤ log(n). To perform the sampling efficiently, we use a k-wise independent hash function:
h : [n]→ [n3].

The procure is the following:

1. Sampling:

if h(i) ≤ n3/2j , then a(j)i = ai

2. Recovery:

run sparse recovery algorithm on x restricted to subset Ih. If any of the sparse-recoveries
succeeds then output a s−sparse vector for s = O(log(1/δ)). Algorithm fails if none of the
sparse-recoveries output a valid vector

2

3. Selection:

pick a level j that has successful recovery, and output the index i of the smallest hash value
h(i). We can understand this as output a random coordinate from the first sparse recovery
that succeeds.

3.2 Analysis of the scheme

We define Nj = ||a(j)||0 as the number of non-zero coordinates. Then s/4 ≤ E[Nj] ≤ s/2. We have
the inequality

P(|Nj − E[Nj]| ≤ E[Nj]) ≤ P(1 ≤ Nj ≤ 2E[Nj]) ≤ P(1 ≤ Nj ≤ s),

and since k ≥ rE[Nj], we have a Chernoff bound-like result for sum of k-wise independent [0, 1]variables,

P (|Nj − E[Nj]| ≤ rE[Nj]) ≤ e−rE[Nj]/3

Since E[Nj] ≥ s/4, if we set s = 12 log(1/δ), the failure probability P [Nj > s] is less than δ = e−s/12.

References

[1] Nick Duffield, Carsten Lund, and Mikkel Thorup. Priority sampling for estimation of arbitrary
subset sums. Journal of ACM, 31(2), 54(6):32, 2007.

3

