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1 Overview

This lecture introduces Priority and lp-Sampling: Priority sampling is the problem that given a
data stream of items with weights w1, ..., w,, we want to store a representative sample of the items
so that we can answer subset sum queries. That is, given a set I C [n], we would like to answer

queries about the value Zwi. Then we introduce lp-Sampling using ideas from linear sketching
el
and sparse recovery.

2 Priority Sampling

Problem: given a data stream of items with weights w1, ..., w,, we want to store a representative
sample S of the items so that we can answer subset sum queries. That is, given a query I C [n],

we would like to approximate W; = Zwi.
el

One scheme is the following:
1. For data wy,...,w,, we sample u; € [0,1] uniformly at random and independently.

2. We compute the priorities ¢; = w;/u; for each i € [n].

3. We always keep the set of items S; containing the k-largest priorities seen so far, as well as
7 the value of the (k + 1)-largest priority.

4. Given a query I C [n], we output W = Z max {7, w;}.
JeIns;,

This scheme has strong optimality guarantees.

2.1 Analysis

. : . . . i} ifiels
For convenience in the analysis we define a different set of weights through w; = {maX{T’ wit ifi € S

0 otherwise
Then, the output of the algorithm is equivalent to W, = Z wj.

Jel
We want to prove the following two results.

Lemma 1. E[w;] = w;.



Proof. Let A(7') be the event that the (k + 1)-th highest priority is 7/, then for all i € S, we must
have that ¢; = w;/u; > 7', and the corresponding weight is w; = maxz(7',w;), otherwise for i ¢ S
¢; <7 and w; = 0. Let’s look at P(i € S|A(7")). We distinguish two cases:

1. w; > 7 then P(i € Sp|A(7)) =1 and @; = w;.

2. w; <7 then P(i € Si|A(7)) = P(u; < %) = % and W; = 7 .

In both cases E[w;] = w;. O
Lemma 2. E[] [ ] = [Jwi, IS| <k, Var() i) = Var(uy).

S S 1 I
Proof. Proof left to the readers. O

3 {p-Sampling

Problem: given a vector (ai,...,ay), we want to sample a random element I € [n] of the vector

N
such that P(I =) =

This is called ¢,-sampling.

We have seen examples of /,-sampling in the streaming setting. For example, reservoir sampling is
{1— sampling with only positive update. In general though, we relax our requirements and we are
|a;|?
2 laglP

fo-sampling means that we are sampling near-uniformly from the distinct elements in the stream.

content if we can sample ¢ with probability (1 + €) =+ § for some €,§ > 0.

3.1 Algorithm

We use ideas from linear sketch and sparse recovery. We assume that given an z € R", we can
use a linear sketch y = Az to compute z such that ||z — z||, < C||z — z¥||,. Observe, if « had few
non-zero coordinates, zrecovers x exactly. We are going to exploit this fact to perform fp-sampling.

We use the following scheme: pick a nest of random subsets I, of the index of xwith size n,n/2,...,n/2",

for some r < log(n). To perform the sampling efficiently, we use a k-wise independent hash function:
h:[n] — [n?].

The procure is the following;:

1. Sampling:
if h(i) <n®/27, then a(j); = a;

2. Recovery:

run sparse recovery algorithm on z restricted to subset I,. If any of the sparse-recoveries
succeeds then output a s—sparse vector for s = O(log(1/9)). Algorithm fails if none of the
sparse-recoveries output a valid vector



3. Selection:

pick a level j that has successful recovery, and output the index ¢ of the smallest hash value
h(i). We can understand this as output a random coordinate from the first sparse recovery
that succeeds.

3.2 Analysis of the scheme

We define N; = ||a(j)||o as the number of non-zero coordinates. Then s/4 < E[N;] < s/2. We have
the inequality

P(IN; — E[N;]| < E[N;]) <P(1 < N; < 2E[N;]) <P(1 < Nj <),
and since k > rE[N}], we have a Chernoff bound-like result for sum of k-wise independent [0, 1]variables,
P(IN; — E[Nj]| < rE[N]) < e #INI/3

Since E[N;] > s/4, if we set s = 121log(1/6), the failure probability P[N; > s] is less than § = e 812,
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