```
CS369G: Algorithmic Techniques for Big Data

\section*{Lecture10: Priority and \(l_{0}\)-Sampling}
```

Prof. Moses Charikar
Scribes: Qingyun Sun

```

\section*{1 Overview}

This lecture introduces Priority and \(l_{0}\)-Sampling: Priority sampling is the problem that given a data stream of items with weights \(w_{1}, \ldots, w_{n}\), we want to store a representative sample of the items so that we can answer subset sum queries. That is, given a set \(I \subset[n]\), we would like to answer queries about the value \(\sum_{i \in I} w_{i}\). Then we introduce \(l_{0}\)-Sampling using ideas from linear sketching and sparse recovery.

\section*{2 Priority Sampling}

Problem: given a data stream of items with weights \(w_{1}, \ldots, w_{n}\), we want to store a representative sample \(S\) of the items so that we can answer subset sum queries. That is, given a query \(I \subset[n]\), we would like to approximate \(W_{I}=\sum_{i \in I} w_{i}\).

One scheme is the following:
1. For data \(w_{1}, \ldots, w_{n}\), we sample \(u_{i} \in[0,1]\) uniformly at random and independently.
2. We compute the priorities \(q_{i}=w_{i} / u_{i}\) for each \(i \in[n]\).
3. We always keep the set of items \(S_{k}\) containing the \(k\)-largest priorities seen so far, as well as \(\tau\) the value of the \((k+1)\)-largest priority.
4. Given a query \(I \subset[n]\), we output \(\hat{W}_{I}=\sum_{j \in I \cap S_{k}} \max \left\{\tau, w_{j}\right\}\).

This scheme has strong optimality guarantees.

\subsection*{2.1 Analysis}

For convenience in the analysis we define a different set of weights through \(w_{i}=\left\{\begin{array}{cl}\max \left\{\tau, w_{i}\right\} & \text { if } i \in S_{k} \\ 0 & \text { otherwise }\end{array}\right.\). Then, the output of the algorithm is equivalent to \(\hat{W}_{I}=\sum_{j \in I} \hat{w}_{j}\).

We want to prove the following two results.
Lemma 1. \(\mathbb{E}\left[\hat{w}_{i}\right]=w_{i}\).

Proof. Let \(A\left(\tau^{\prime}\right)\) be the event that the \((k+1)\)-th highest priority is \(\tau^{\prime}\), then for all \(i \in S\), we must have that \(q_{i}=w_{i} / u_{i}>\tau^{\prime}\), and the corresponding weight is \(\hat{w}_{i}=\max \left(\tau^{\prime}, w_{i}\right)\), otherwise for \(i \notin S\) \(q_{i} \leq \tau^{\prime}\) and \(\hat{w}_{i}=0\). Let's look at \(\mathbb{P}\left(i \in S \mid A\left(\tau^{\prime}\right)\right)\). We distinguish two cases:
1. \(w_{i}>\tau^{\prime}\) : then \(\mathbb{P}\left(i \in S_{k} \mid A\left(\tau^{\prime}\right)\right)=1\) and \(\hat{w}_{i}=w_{i}\).
2. \(w_{i} \leq \tau^{\prime}\) : then \(\mathbb{P}\left(i \in S_{k} \mid A\left(\tau^{\prime}\right)\right)=\mathbb{P}\left(u_{i} \leq \frac{w_{i}}{\tau^{\prime}}\right)=\frac{w_{i}}{\tau^{\prime}}\) and \(\hat{w}_{i}=\tau^{\prime}\).

In both cases \(\mathbb{E}\left[\hat{w}_{i}\right]=w_{i}\).
Lemma 2. \(\mathbb{E}\left[\prod_{S} \hat{w}_{i}\right]=\prod_{S} w_{i},|S| \leq k, \operatorname{Var}\left(\sum_{I} \hat{w}_{i}\right)=\sum_{I} \operatorname{Var}\left(\hat{w}_{i}\right)\).
Proof. Proof left to the readers.

\section*{\(3 \ell_{0}\)-Sampling}

Problem: given a vector \(\left(a_{1}, \ldots, a_{n}\right)\), we want to sample a random element \(I \in[n]\) of the vector such that \(\mathbb{P}(I=i)=\frac{\left|a_{i}\right|^{p}}{\sum\left|a_{j}\right|^{\mid}}\). This is called \(\ell_{p}\)-sampling.
We have seen examples of \(\ell_{p}\)-sampling in the streaming setting. For example, reservoir sampling is \(\ell_{1}-\) sampling with only positive update. In general though, we relax our requirements and we are content if we can sample \(i\) with probability \((1+\epsilon) \frac{\left|a_{i}\right|^{p}}{\sum\left|a_{j}\right|^{p}} \pm \delta\) for some \(\epsilon, \delta>0\).
\(\ell_{0}\)-sampling means that we are sampling near-uniformly from the distinct elements in the stream.

\subsection*{3.1 Algorithm}

We use ideas from linear sketch and sparse recovery. We assume that given an \(x \in \mathbb{R}^{n}\), we can use a linear sketch \(y=A x\) to compute \(z\) such that \(\|x-z\|_{p} \leq C\left\|x-x^{*}\right\|_{p}\). Observe, if \(x\) had few non-zero coordinates, zrecovers \(x\) exactly. We are going to exploit this fact to perform \(\ell_{0}\)-sampling.
We use the following scheme: pick a nest of random subsets \(I_{h}\) of the index of \(x\) with size \(n, n / 2, \ldots, n / 2^{r}\), for some \(r \leq \log (n)\). To perform the sampling efficiently, we use a \(k\)-wise independent hash function: \(h:[n] \rightarrow\left[n^{3}\right]\).

The procure is the following:
1. Sampling:
if \(h(i) \leq n^{3} / 2^{j}\), then \(a(j)_{i}=a_{i}\)
2. Recovery:
run sparse recovery algorithm on \(x\) restricted to subset \(I_{h}\). If any of the sparse-recoveries succeeds then output a \(s\)-sparse vector for \(s=O(\log (1 / \delta))\). Algorithm fails if none of the sparse-recoveries output a valid vector

\section*{3. Selection:}
pick a level \(j\) that has successful recovery, and output the index \(i\) of the smallest hash value \(h(i)\). We can understand this as output a random coordinate from the first sparse recovery that succeeds.

\subsection*{3.2 Analysis of the scheme}

We define \(N_{j}=\|a(j)\|_{0}\) as the number of non-zero coordinates. Then \(s / 4 \leq \mathbb{E}\left[N_{j}\right] \leq s / 2\). We have the inequality
\[
\mathbb{P}\left(\left|N_{j}-\mathbb{E}\left[N_{j}\right]\right| \leq \mathbb{E}\left[N_{j}\right]\right) \leq \mathbb{P}\left(1 \leq N_{j} \leq 2 \mathbb{E}\left[N_{j}\right]\right) \leq \mathbb{P}\left(1 \leq N_{j} \leq s\right)
\]
and since \(k \geq r \mathbb{E}\left[N_{j}\right]\), we have a Chernoff bound-like result for sum of \(k\)-wise independent \([0,1]\) variables,
\[
P\left(\left|N_{j}-\mathbb{E}\left[N_{j}\right]\right| \leq r \mathbb{E}\left[N_{j}\right]\right) \leq e^{-r \mathbb{E}\left[N_{j}\right] / 3}
\]

Since \(\mathbb{E}\left[N_{j}\right] \geq s / 4\), if we set \(s=12 \log (1 / \delta)\), the failure probability \(P\left[N_{j}>s\right]\) is less than \(\delta=e^{-s / 12}\).

\section*{References}
[1] Nick Duffield, Carsten Lund, and Mikkel Thorup. Priority sampling for estimation of arbitrary subset sums. Journal of ACM, 31(2), 54(6):32, 2007.```

