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1 Overview

In this lecture, we continue our discussion of graph streaming algorithms. We consider the setting
where edges can both arrive and depart in a stream, and we are asked to answer some queries at
the end of the stream. We will look at the connectivity problem, the k-connectivity problem, and
the min-cut problem.

2 Connectivity

Given a stream of edge insertions and deletions, we want to answer queries about the connectivity
of the resulting graph at the end of the stream. We first consider a simple non-streaming algorithm
that constructs the connected components of a graph. We then show how to use linear sketches to
support the operations needed by this algorithm.

2.1 Building connected components

Given a graph, we can construct the connected components in O(log n) stages. In the first stage, we
arbitrarily pair up adjacent nodes, and consider these node-pairs as “supernodes.” In each of the
following stages, we arbitrarily pair up adjacent supernodes and merge them into new supernodes.
We stop when there is no edge between any of the supernodes. It is easy to see that this process
terminates in O(log n) stages, and we obtain the connected components of the graph in the end.

2.2 Sketches for connectivity

Since the graph stream involves both edge insertions and edge deletions, we consider using a linear
sketch to represent the graph, as edge deletions can be easily handled by the linearity of the sketch.
To support the above algorithm, we need to be able to give some cut edge for each supernode. We

consider the following graph representation. For each node i ∈ V , let ai ∈ {−1, 0, 1}(
n
2) be a vector

where

ai(j,k)∈E
j<k

=


1 if i = j < k,

−1 if j < k = i,

0 otherwise.

We observe that if S is the set of vertices in a supernode, then the nonzero entries of the sum
∑
i∈S

ai

correspond exactly to the cut edges of the supernode. Thus, we would like to be able to return
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some nonzero entry of
∑
i∈S

ai in order to build connected components. To do this, we can use the

`0-sampling discussed in the previous lectures. We maintain a `0-sketch for each ai, i ∈ V . Then,
for any S ⊆ V ,

`0-sketch

(∑
i∈S

ai

)
=
∑
i∈S

`0-sketch(ai)

by the linearity of the sketches. To obtain a cut edge of a supernode S, we perform an `0-sampling on

the sketch
∑
i∈S

`0-sketch(ai). Note that each `0-sketch uses polylog space. Therefore, this algorithm

needs O(n polylogn) space in total.

3 k-Connectivity

We define a graph to be k-connected if every cut of the graph has size at least k. We want to know,
at the end of the graph stream, whether the resulting graph is k-connected. In the previous section,
we learned how to build a spanning forrest in a streaming model. For k-connectivity, we leverage

this to construct k spanning forests. For i = 1, . . . , k, let Fi be a spanning forest of (V,E \
i−1
∪
j=1

Fj).

We call H = F1 ∪ · · · ∪ Fk the k-skeleton of the graph.

We observe that for any cut S ⊆ V , |EG(S, S)| ≥ k implies |EH(S, S)| ≥ k. The reason is that if
every Fi contains a cut edge of S, then |EH(S, S)| ≥ k. On the other hand, if some Fi does not
contain any cut edge of S, it must be the case that F1 ∪ · · · ∪ Fi−1 has included all the cut edges
already. Thus, |EH(S, S)| = |EG(S, S)| ≥ k. Therefore, we see that G is k-connected if and only if
H is k-connected.

One last note is that we need to keep k independent sketches of the graph in order to construct the
k-skeleton. Let A(G) denote the linear sketch for connectivity discussed in the previous section. For
k-connectivity, we need to keep k independent sketches, A1(G), . . . ,Ak(G). Then, for i = 1, . . . , k,
we construct the spanning forest Fi from

Ai(G− F1 − · · · − Fi−1) = Ai(G)−
i−1∑
j=1

Ai(Fj).

4 Min-Cut

4.1 Sparsification via sampling

We first give a brief review of graph sparsification by random sampling. Consider the following
generic graph sampling algorithm.

1. Sample edge e with probability pe.

2. If e is sampled, set its weight to
1

pe
.
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The expected weight of each edge is equal to 1. It turns out that if pe is sufficiently large, cut sizes
are well preserved within (1± ε) with high probability. Such graphs are called cut sparsifiers. Here
is a list of useful results.

• Karger in [2] showed that if

pe ≥ min

(
1,
c1 log n

λε2

)
,

where λ is the size of the min-cut, then the resulting graph is a cut sparsifier with high
probability.

• Fung et al. in [1] showed that if

pe ≥ min

(
1,
c2 log2 n

λeε2

)
,

where λe is the size of the min-cut that separates the two end points of e, then the resulting
graph is a cut sparsifier with high probability.

• Spielman and Srivastava in [4] showed that if

pe ≥ min

(
1,
c3re log n

ε2

)
,

where re is the effective resistance of edge e, then we obtain a spectral sparsifier with high
probability.

4.2 Min-Cut

We will use Karger’s result together with our algorithm for k-connectivity from the previous section
to solve the min-cut problem. Karger’s result states that if the sampling probability is sufficiently
large, then the size of the min cut should be well preserved with high probability. However, ut
presupposes knowledge of the min-cut value λ. To get around this, we will create log(n) sketches,
one for each possible value (up to a factor of 2) of λ (or equivalently of the correct sampling
probability), and try to recover the correct value by looking at the sketches.

Concretely, we consider a sequence of graphs where the sampling probability decreases geometri-
cally. Let G0, G1, G2 . . . be a sequence of graphs where Gt is G with edges sampled with probability
1

2t
. When the sampling probability becomes as low as Θ

(
log n

λε2

)
, the size of the min-cut in the

resulting graph is Θ

(
log n

ε2

)
with high probability, according to Karger. Thus, there exists a t such

that mincut(Gt) = Θ

(
log n

ε2

)
. We let k = Θ

(
log n

ε2

)
, and run k-connectivity on G0, G1, G2 . . . .

Then, we find the minimum index j such that Gj is not k-connected,

j = min
t
{mincut(Gt) < k}.

This means that at Gj , the sampling probability has dropped to Θ

(
log n

λε2

)
with high probability.

Thus, our estimate for the size of the mincut is 2j mincut(Gj).
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