
CS369G: Algorithmic Techniques for Big Data Spring 2015-2016

Lecture 17: Locality Sensitive Hashing and Dimension Reduction

Prof. Moses Charikar Scribes: Joseph Shayani

1 Overview

In this lecture, we give review the setup Locality Sensitive Hashing (LSH) and its connection to
Nearest Neighbor Search (NNS) and give examples of LSH schemes for NNS with `2 metrics. We
move on to discuss the time/space tradeoff in choice of LSH scheme and the connection between LSH
and measures of similarity. We discuss how domain-specific knowledge can make LSH more effective
in practice, and we mention one industry application of NNS that uses a heuristic alternative to LSH.
In addition, we build on our earlier discussion of Dimension Reduction by presenting a stronger,
distributional formulation of the lemma of Johnson and Lindenstrauss [JL84], and then we give
examples of schemes that perform dimension reduction quickly.

2 Locality Sensitive Hashing

2.1 Definition of LSH and use for Approximate NNS

First we recall the definition of a family of (r, cr, p1, p2)-Locality Sensitive Hash functions.

Definition 1. Let (X, d) be a metric space, and let Y be any set. Then family of hash function
H with each h ∈ H mapping X → Y is a (r, cr, p1, p2)-Locality Sensitive Hash family if for any
x1, x2 ∈ X,

P (h(x1) = h(x2)) ≥ p1 whenever d(x1, x2) ≤ r,
P (h(x1) = h(x2)) ≤ p2 whenever d(x1, x2) ≥ cr;

where the probability is over uniform random choice of h from H. 1

Given a set ofn points S ⊂ X, we saw in the previous lecture that if we write p1 = pρ2, where
ρ = ρ(c, d), then given a LHS family, we can support approximate nearest neighbor search (NNS)
queries in time O(nρ), by using nρ hash tables for total space O(n1+ρ)).

Approximate nearest neighbor search requires that we return a neighbor within distance cr of the
query point q ∈ X if there is a point x ∈ S with d(x, q) = r. Accordingly, we can view the
relationship between ρ and c as a trade-off between space/time and accuracy.

We saw that if X = {0, 1}k and d is a Hamming distance, we can achieve ρ = 1/c. We can do as
well for any `1 distance, and in fact we cannot do any better.

1The definition is only interesting for some conditions on the parameters (e.g. p1 < p2, c > 1).

1

2.2 LSH schemes for NNS with `2 distance

It is a fact that we can always map a metric space with an `2 distance to one with an `1 in an
isometric (distance preserving) manner.2 This fact guarantees that we can achieve ρ = 1/c, in the
above sense, for LSH with `2 distance.

Several schemes do better than ρ = 1/c. The following are a few examples. X will be a vector
space equipped with `2 distance d, i.e. X has an inner product and d(x1, x2) = (x1−x2) · (x1−x2).

• [DIIM04] Choose a random line ` (↔ unit vector), and split up the line into buckets of width
w (this w will be the parameter we control). We can project each point x ∈ X onto `,
and random noise, and identify x by the bucket along ` in which the resulting projection of
the point lies. More precisely, for each unit vector `, define h`(x) = b(x · ` + α)/wc, where
α ∈R [0, w).

• [AI06] First map Π : X → Rd, and take a random sequence s of points s1, s2, · · · ∈ Rd. Fix a
radius δ. Define hs(x) = arg min

i>0
Π(x) ∈ Bδ(si), i.e. the first ball contain Π(x) in the sequence

of balls of radius δ with center at the si. For a sufficiently large constant d (independent of
the dimension of X), this scheme achieves ρ → 1/c2 as n → ∞. This scheme is mostly of
theoretical importance. As a more practical alternative, instead we can pick lattice points in
Rd and identify x with the lattice point closest Π(x) (ibid.).

The following scheme is useful in the case that we wish to hash the metric subspace of unit vectors.
Let X = Sn.

• [AIL+15] First pick a random rotation R, then identify x ∈ X with the index of the largest
magnitude coordinate. This scheme, called the cross-polytope hash, achieves ρ ≈ 1/c2.

2.3 Space and query time tradeoff

We might have the alternative goal of finding a LSH scheme with low space. [Pan06] demonstrated
such a scheme using Õ(1) hash tables, i.e. Õ(n) space. For `1 distance, the scheme requires query
time of O(n2.06/c). In Panigrahy’s scheme, we investigate multiple buckets in each table for a single
query. A similar idea was explored in [LJW+07] to reduce the space of the LSH data structure.
In fact, Kapralov [Kap15] showed that there is a smooth tradeoff between storage space and query
time.

2.4 Measures of similarity and Hash families

In the previous lecture, we mentioned that for the Jacard similarity between two multi-sets

sim(A,B) =
|A ∩B|
|A ∪B|

,

2Moreover, if we allow distortion by a factor of 1 ± ε, then a scheme using random projections will be sufficient.

2

we can find a family of hash functions H with

P (h(A) = h(B)) = sim(A,B).

Question 2. For which other measures of similarity does there exist a hash family H with P (h(A) =
h(B)) = sim(A,B)?

We can prove the following sufficient condition:

Proposition 3. [Cha02] If there exists a hash family H with P (h(A) = h(B)) = sim(A,B) for
each A,B ∈ X, then 1− sim(·, ·) is a metric.

Proof. We will prove that 1− sim(A,B) satisfies the triangle inequality, i.e. that for each A,B,C ∈
X,

1− sim(A,B) + 1− sim(B,C) ≥ 1− sim(A,C).

By hypothesis, the condition is equivalent to

P (h(A) 6= h(B)) + P (h(B) 6= h(C)) ≥ P (h(A) 6= h(C)).

It is sufficient to prove that for each h ∈ H

Ih(A)6=h(B) + Ih(B)6=h(C) ≥ Ih(A)6=h(C), (1)

where each I is an indicator function (then we average over all h ∈ H). (1) could be false only in
if the left hand side is 0 and the right hand side is 1. If the left hand side is 0, it must be that
h(A) = h(B) and h(B) = h(C), but then by transitivity h(A) = h(C), so the right hand side is
also 0.

In fact, a stronger result can be proven:

Fact 4. If there exists a hash family H with P (h(A) = h(B)) for each A,B ∈ X, then the metric
space (X, sim(·, ·)) is embeddable in a metric space with the generalized Hamming distance.

Idea. Represent each A ∈ X by (h1(A), h2(A), . . .) for h1, h2, · · · ∈ H. More care must be taken if
H is uncountable.

See [CK12] for a further discussion of which measures of similarity correspond to hash families.

2.5 Data-aware versus data-oblivious hashing

There are two general philosophies for designing hash functions. We can either design hash functions
with guarantees for any data set, or we can try to use extra information about particular data sets in
order to design hash functions with better performance. LSH normally falls in the former category.
In the setting of LSH, sometimes we can do better if we impose extra structure on our data. For
example, if for each query q point there exists one nearest at distance r and all other points are
distributed in a uniformly-random-like manner at the boundary of the ball of radius cr centered at
q, then we can achieve ρ = .5/c2. Moreover, it is possible to perform transformations on arbitrary
point sets in a metric space in order to satisfy this condition [AR15]. See also [AINR14].

3

2.6 Application of NNS: PatchMatch

One remarkable industry application of NNS that uses a different (non-LSH) approach is Photoshop
Intelligent Fill, which uses an algorithm called PatchMatch to find correspondences between small
regions of images in order to support operations like removal of objects from photos. The algorithm
constructs an approximate nearest neighbors graph and makes iterative improvements. Interested
readers should see [BSFG09] and [DML11].

3 Dimension Reduction

Suppose we have n points in Rd. We want to map the points to a smaller space Rk in a way such
that distances between pairs of points are nearly preserved. We have seen the result due to Johnson
and Lindenstrauss [JL84] that says this is possible to do such a map such that all distances are
preserved within a factor of 1± ε if we choose k = O(log(n)/ε2). We reformulate the Johnson and
Linderstrauss lemma in such a way that we eliminate consideration of the size n of a set of points.

More precisely, we seek a linear map Π : Rd → Rk such that for any unit vector x ∈ Rd,

P (|||Πx||22 − 1| > ε) < δ.

Fact 5. [JL84] Such a Π can be found for choice of k = O(log(1/δ)/ε2).

This choice of k is nearly tight: For a fixed choice of δ, we must have k ≥ 1

ε2 log(1/ε)
. See Section

9 of [Alo03].

Proposition 6. Fact 5 implies the Johnson-Lindenstrauss lemma.

Proof. Given n points x1, . . . , xn ∈ Rd and some fixed ε̃, δ̃ > 0, as in the set up of Johnson-
Lindenstrauss, invoke Fact 5 with unit vectors (xi − xj)/||xi − xj || for each i 6= j ∈ [n]. We
get

||Π(xi − xj)||22 ∈ [(1− ε)||xi − xj ||22, (1 + ε)||xi − xj ||22] (2)

for each pair i, j. We want (2) to hold O(n2) pairs i, j simultaneously with high probability. We set
δ = 1/n3 in the statement of Fact 5 and apply the union bound so that we have failure probability
at most 1/n→ 0 < δ̃. We can set ε = ε̃ because the interval only gets tighter when we take square
roots in (2). Fact 5 requires that we take k = O(log(1/δ)/ε2) = O(log(n3)/ε2) = O(log(n)/ε2).
This is exactly the Johnson-Lindenstrauss lemma.

Question 7. How quickly we can map Rd → Rk?

In the worst case, computing Πx takes time dk, where Π is k × d and x ∈ Rd. We can do better.
[Ach03] showed that if we can achieve Fact 5 with

Πij =

1 with probability 1/6

−1 with probability 1/6

0 with probability 2/3

4

Thus computing Πx takes time dk/3 on average. Recall that k = O(log(1/δ)/ε2), so dk =
O(d log(1/δ)/ε2). Kane and Nelson [KN14] showed that we can do even better and save a fac-
tor of 1/ε.

References

[Ach03] Dimitris Achlioptas. Database-friendly random projections: Johnson-lindenstrauss with
binary coins. Journal of computer and System Sciences, 66(4):671–687, 2003.

[AI06] Alexandr Andoni and Piotr Indyk. Near-optimal hashing algorithms for approximate
nearest neighbor in high dimensions. In Foundations of Computer Science, 2006.
FOCS’06. 47th Annual IEEE Symposium on, pages 459–468. IEEE, 2006.

[AIL+15] Alexandr Andoni, Piotr Indyk, Thijs Laarhoven, Ilya Razenshteyn, and Ludwig
Schmidt. Practical and optimal lsh for angular distance. In Advances in Neural In-
formation Processing Systems, pages 1225–1233, 2015.

[AINR14] Alexandr Andoni, Piotr Indyk, Huy L Nguyen, and Ilya Razenshteyn. Beyond locality-
sensitive hashing. In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 1018–1028. SIAM, 2014.

[Alo03] Noga Alon. Problems and results in extremal combinatoricsi. Discrete Mathematics,
273(1):31–53, 2003.

[AR15] Alexandr Andoni and Ilya Razenshteyn. Optimal data-dependent hashing for approxi-
mate near neighbors. In Proceedings of the Forty-Seventh Annual ACM on Symposium
on Theory of Computing, pages 793–801. ACM, 2015.

[BSFG09] Connelly Barnes, Eli Shechtman, Adam Finkelstein, and Dan B Goldman. PatchMatch:
A randomized correspondence algorithm for structural image editing. ACM Transactions
on Graphics (Proc. SIGGRAPH), 28(3), August 2009.

[Cha02] Moses S Charikar. Similarity estimation techniques from rounding algorithms. In Pro-
ceedings of the thiry-fourth annual ACM symposium on Theory of computing, pages
380–388. ACM, 2002.

[CK12] Flavio Chierichetti and Ravi Kumar. Lsh-preserving functions and their applications. In
Proceedings of the twenty-third annual ACM-SIAM symposium on Discrete Algorithms,
pages 1078–1094. SIAM, 2012.

[DIIM04] Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S Mirrokni. Locality-sensitive
hashing scheme based on p-stable distributions. In Proceedings of the twentieth annual
symposium on Computational geometry, pages 253–262. ACM, 2004.

[DML11] Wei Dong, Charikar Moses, and Kai Li. Efficient k-nearest neighbor graph construction
for generic similarity measures. In Proceedings of the 20th international conference on
World wide web, pages 577–586. ACM, 2011.

[JL84] W B Johnson and J Lindenstrauss. Extensions of lipschitz mappings into a hilbert
space. Contemporary Mathematics, 26:189–206, 1984.

5

[Kap15] Michael Kapralov. Smooth tradeoffs between insert and query complexity in nearest
neighbor search. In Proceedings of the 34th ACM Symposium on Principles of Database
Systems, pages 329–342. ACM, 2015.

[KN14] Daniel M Kane and Jelani Nelson. Sparser johnson-lindenstrauss transforms. Journal
of the ACM (JACM), 61(1):4, 2014.

[LJW+07] Qin Lv, William Josephson, Zhe Wang, Moses Charikar, and Kai Li. Multi-probe lsh:
efficient indexing for high-dimensional similarity search. In Proceedings of the 33rd
international conference on Very large data bases, pages 950–961. VLDB Endowment,
2007.

[Pan06] Rina Panigrahy. Entropy based nearest neighbor search in high dimensions. In Pro-
ceedings of the seventeenth annual ACM-SIAM symposium on Discrete algorithm, pages
1186–1195. Society for Industrial and Applied Mathematics, 2006.

6

