## Lecture 18: Fast JL dimension reduction

Prof. Moses Charikar
Scribes: Vatsal Sharan

## 1 Overview

Recall that the Johnson-Lindenstrauss transform (JLT) projects $n$ points in $\mathbb{R}^{d}$ to $\mathbb{R}^{k}$ where $k=$ $O\left(\epsilon^{-2} \log n\right)$ such that all pairwise distances are distorted by at most a $1 \pm \epsilon$ multiplicative factor with high probability. Note that the JLT is a linear map from $\mathbb{R}^{d} \rightarrow \mathbb{R}^{k}$ which takes time $O(d k)$ to compute. We can also think of the JLT as providing a guarantee that for any $x \in \mathbb{R}^{d}$, with probability $1-\delta$, the $L_{2}$ norm of $x$ is preserved upto a multiplicative factor of $1 \pm \epsilon$ under the transformation $x \rightarrow \Pi x$, where $\Pi \in \mathbb{R}^{k \times d}$ is the projection matrix, for $k=O\left(\epsilon^{-2} \log n\right)$. In this lecture we'll explore variants of the JLT which speed up the computation.

## 2 Previous work

Achlioptas [1] gave a constant factor improvement for the running time of the JLT by sampling the entries of the projection matrix from $\{-1,0,+1\}$ instead of the standard Normal distribution. Kane and Nelson [2] showed that having $\Pi$ which has only $\tilde{O}\left(\epsilon^{-1} \log n\right)$ non-zero entries in each column suffices to preserve distances. Note that projection using the sparse $\Pi$ only takes time $O\left(\epsilon^{-1} d \log n\right)$. They also showed a lower bound of $\tilde{O}\left((\epsilon \log 1 / \epsilon)^{-1} \log n\right)$ on the sparsity of $\Pi$ in order to preserve $\ell_{2}$ distance for all $x$. The idea behind the lower bound is that the projection will fail for sparse $x$ if the sparsity of $\Pi$ if too low, as we might miss all non-zero entries of $x$.

## 3 Fast JL Transform

Ailon and Chazelle [3] gave an algorithm which beats the lower bound of Kane and Nelson, by providing a high-probability guarantee for any $x$ instead of a worst-case bound for all $x$. They use a projection matrix $\Pi$ of the following form-

$$
\begin{equation*}
\Pi=[P]_{k \times d}[H]_{d \times d}[D]_{d \times d} \tag{1}
\end{equation*}
$$

Here $P$ is a sparse projection matrix where every entry is 0 with probability $1-q$ and is drawn from a Normal distribution with mean 0 and variance $q^{-1}$ otherwise. $D$ is a diagonal matrix where $D_{i i}=\{ \pm 1\}$ with equal probability. $H$ is the Walsh-Hadamard matrix. The main intuition is to express the original signal in a different basis, such as the Fourier basis or the Walsh-Hadamard basis. Any signal which is originally sparse will be dense in the new basis and this allows us to bypass the lower bound for sparse $x$.

The key point is that the matrix multiplications $(D x)$ and $H(D x)$ can be computed efficiently using the special structure of the matrices $H$ and $D$. Note that $D$ is diagonal and hence $D x$ can
be computed in time $O(d)$ time. $H(D x)$ can be computed in time $O(d \log d)$ by using the recursive structure of the $H$ matrix (think of the FFT matrix which allows us to compute FFT in time $O(d \log d))$.

The key benefit of using the transformation $H D$ is the following property-

$$
\begin{equation*}
\mathbb{P}\left[\|H D x\|_{\infty} \geq \sqrt{\frac{\log (d / \delta)}{d}}\right]<\delta \tag{2}
\end{equation*}
$$

Note that this is almost the best possible spreading, as $\|H D x\|_{2}=1$ hence on an average each entry would be $\sqrt{\frac{1}{d}}$ hence the spreading is almost optimal.

Computing the projection $P(H D x)$ takes time $K d q=\frac{\log n}{\epsilon^{2}} d \frac{\log ^{2} n}{d}=\frac{\log ^{3} n}{\epsilon^{2}}$. Hence the total time is $O\left(d \log d+\epsilon^{-2} \log ^{3} n\right)$. Let's compare this to Kane and Nelson's algorithm which takes time $O\left(\epsilon^{-2} n d \log d\right)$. The FJLT outperforms this when $\log d \ll \epsilon^{-2} \log n$, which is often the case.

## 4 Solving system of linear equations with noise

Suppose we want to solve the system of linear equations $A x+\epsilon=b$, where $A$ is a $n \times d$ matrix, $x$ is a $d$-dimensional vector, $b$ is a $n$ dimensional vector, $\epsilon$ random noise independent of $x$. If we are trying to minimize the $\ell_{2}$ error $\|A x-b\|_{2}$ and $A^{T} A$ is invertible, the optimal value of $x$ is given by the well-known least squares solution $x=\left(A^{T} A\right)^{-1} A^{T} b$ where $\left(A^{T} A\right)^{-1} A^{T}=A^{\dagger}$ is also referred to as the Moore-Penrose pseudoinverse of $A$. Note that computing the least squares solution will take time $O\left(n d^{2}\right)$. We will focus on the setting where $n$ or the number of data points is very large hence we want to reduce the dependence of the runtime on $n$. We can also consider other norms, for the $\ell_{1}$ norm the problem can be formulated as an LP, which also takes time polynomial in the number of constraints $n$ to solve.

### 4.1 Speeding up computation using Fast JLT

Recall that the objective is to minimize $\|A x-b\|_{2}$. If we can project the data into a lower dimension which still preserves $\ell_{2}$ distances within a factor $1 \pm \epsilon$, then we could still solve the original problem approximately. Based on this idea, we consider a $r \times n$ projection matrix $S$, and the optimization problem-

$$
\begin{equation*}
\min \|(S A) x-(S b)\|_{2} \tag{3}
\end{equation*}
$$

We will set $r=O\left(\epsilon^{-2} d\right)$, which will give us significant savings in the runtime if $n \gg \epsilon^{-2} d$. In order to still be able to approximately solve the original problem, we need our projection $S$ to satisfy-

$$
\begin{equation*}
(1-\epsilon)\|A x-b\|_{2} \leq\|S(A x-b)\|_{2} \leq(1+\epsilon)\|A x-b\|_{2} \tag{4}
\end{equation*}
$$

Consider a $n \times(d+1)$ matrix $U$ with orthonormal columns such that colspace $(U)=\operatorname{colspace}\left(\left[\begin{array}{ll}A & b\end{array}\right]\right.$. Sample the entries of our projection matrix $S$ from $N(0,1 / r)$. We claim that $S U$ is a set of independent random vectors. To verify, note that each row of $S U$ is definitely independent of all
other rows as the rows of $S$ are independent. We claim that the entries within each row are also independent. To verify, note that each entry of $S U$ is a Gaussian random variable, and Gaussian random variables are independent if they are uncorrelated. It is easy to verify that the entries in each row are uncorrelated as the columns of $U$ are orthogonal.

Let $A x-b=U y$. Note that $\|U y\|_{2}=\|y\|_{2}$ as $U$ is orthonormal. We need to ensure that $\|S U y\|_{2} \approx\|y\|_{2}$. If all the singular values of $S U \in[1-\epsilon, 1+\epsilon]$, then $\|S U y\|_{2} \approx\|y\|_{2}$. By using an $\epsilon$-net argument, Rudelson and Vershynin [4] showed that taking $r=O\left(\epsilon^{-2} d\right)$ suffices to ensure that all the singular values of $S U \in[1-\epsilon, 1+\epsilon]$, with probability $1-e^{-d}$. Hence $\ell_{2}$ distances are approximately preserved under this transformation.

In order to speed-up the projection step, we can now use the FJLT instead of the JLT. This brings the total time to $O(r d \log d)+\operatorname{poly}(d / \epsilon)$, which has no dependence on $n$ and can be a significant saving if the number of constraints/observations $n$ is large.

In the next lecture we'll see a further improvement of the result due to Clarkson and Woodruff [5] who obtained a surprising runtime of $O(\mathrm{nnz}(A))+\operatorname{poly}(d / \epsilon)$. They used the count-sketch matrix for their construction.

## References

[1] Dimitris Achlioptas. Database-friendly random projections: Johnson-lindenstrauss with binary coins. Journal of computer and System Sciences, 66(4):671-687, 2003.
[2] Daniel M Kane and Jelani Nelson. Sparser johnson-lindenstrauss transforms. Journal of the ACM (JACM), 61(1):4, 2014.
[3] Nir Ailon and Bernard Chazelle. The fast johnson-lindenstrauss transform and approximate nearest neighbors. SIAM Journal on Computing, 39(1):302-322, 2009.
[4] Mark Rudelson and Roman Vershynin. Non-asymptotic theory of random matrices: extreme singular values. arXiv preprint arXiv:1003.2990, 2010.
[5] Kenneth L Clarkson and David P Woodruff. Low rank approximation and regression in input sparsity time. In Proceedings of the forty-fifth annual ACM symposium on Theory of computing, pages 81-90. ACM, 2013.

