
CS369G: Algorithmic Techniques for Big Data Spring 2015-2016

Lecture 18: Fast JL dimension reduction

Prof. Moses Charikar Scribes: Vatsal Sharan

1 Overview

Recall that the Johnson-Lindenstrauss transform (JLT) projects n points in Rd to Rk where k =
O(ε−2 log n) such that all pairwise distances are distorted by at most a 1± ε multiplicative factor
with high probability. Note that the JLT is a linear map from Rd → Rk which takes time O(dk)
to compute. We can also think of the JLT as providing a guarantee that for any x ∈ Rd, with
probability 1 − δ, the L2 norm of x is preserved upto a multiplicative factor of 1 ± ε under the
transformation x → Πx, where Π ∈ Rk×d is the projection matrix, for k = O(ε−2 log n). In this
lecture we’ll explore variants of the JLT which speed up the computation.

2 Previous work

Achlioptas [1] gave a constant factor improvement for the running time of the JLT by sampling
the entries of the projection matrix from {−1, 0,+1} instead of the standard Normal distribution.
Kane and Nelson [2] showed that having Π which has only Õ(ε−1 log n) non-zero entries in each
column suffices to preserve distances. Note that projection using the sparse Π only takes time
O(ε−1d log n). They also showed a lower bound of Õ((ε log 1/ε)−1 log n) on the sparsity of Π in
order to preserve `2 distance for all x. The idea behind the lower bound is that the projection will
fail for sparse x if the sparsity of Π if too low, as we might miss all non-zero entries of x.

3 Fast JL Transform

Ailon and Chazelle [3] gave an algorithm which beats the lower bound of Kane and Nelson, by
providing a high-probability guarantee for any x instead of a worst-case bound for all x. They use
a projection matrix Π of the following form-

Π = [P ]k×d[H]d×d[D]d×d (1)

Here P is a sparse projection matrix where every entry is 0 with probability 1 − q and is drawn
from a Normal distribution with mean 0 and variance q−1 otherwise. D is a diagonal matrix where
Dii = {±1} with equal probability. H is the Walsh-Hadamard matrix. The main intuition is to
express the original signal in a different basis, such as the Fourier basis or the Walsh-Hadamard
basis. Any signal which is originally sparse will be dense in the new basis and this allows us to
bypass the lower bound for sparse x.

The key point is that the matrix multiplications (Dx) and H(Dx) can be computed efficiently
using the special structure of the matrices H and D. Note that D is diagonal and hence Dx can
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be computed in time O(d) time. H(Dx) can be computed in time O(d log d) by using the recursive
structure of the H matrix (think of the FFT matrix which allows us to compute FFT in time
O(d log d)).

The key benefit of using the transformation HD is the following property-

P

[
‖ HDx ‖∞≥

√
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d

]
< δ (2)

Note that this is almost the best possible spreading, as ‖ HDx ‖2= 1 hence on an average each

entry would be

√
1

d
hence the spreading is almost optimal.

Computing the projection P (HDx) takes time Kdq =
log n
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=
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ε2
. Hence the total time

is O(d log d + ε−2 log3 n). Let’s compare this to Kane and Nelson’s algorithm which takes time
O(ε−2nd log d). The FJLT outperforms this when log d� ε−2 log n, which is often the case.

4 Solving system of linear equations with noise

Suppose we want to solve the system of linear equations Ax+ ε = b, where A is a n× d matrix, x
is a d-dimensional vector, b is a n dimensional vector, ε random noise independent of x. If we are
trying to minimize the `2 error ‖ Ax − b ‖2 and ATA is invertible, the optimal value of x is given
by the well-known least squares solution x = (ATA)−1AT b where (ATA)−1AT = A† is also referred
to as the Moore-Penrose pseudoinverse of A. Note that computing the least squares solution will
take time O(nd2). We will focus on the setting where n or the number of data points is very large
hence we want to reduce the dependence of the runtime on n. We can also consider other norms,
for the `1 norm the problem can be formulated as an LP, which also takes time polynomial in the
number of constraints n to solve.

4.1 Speeding up computation using Fast JLT

Recall that the objective is to minimize ‖ Ax − b ‖2. If we can project the data into a lower
dimension which still preserves `2 distances within a factor 1 ± ε, then we could still solve the
original problem approximately. Based on this idea, we consider a r × n projection matrix S, and
the optimization problem-

min ‖ (SA)x− (Sb) ‖2 (3)

We will set r = O(ε−2d), which will give us significant savings in the runtime if n >> ε−2d. In order
to still be able to approximately solve the original problem, we need our projection S to satisfy-

(1− ε) ‖ Ax− b ‖2≤‖ S(Ax− b) ‖2≤ (1 + ε) ‖ Ax− b ‖2 (4)

Consider a n×(d+1) matrix U with orthonormal columns such that colspace(U) = colspace([A b]).
Sample the entries of our projection matrix S from N(0, 1/r). We claim that SU is a set of in-
dependent random vectors. To verify, note that each row of SU is definitely independent of all
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other rows as the rows of S are independent. We claim that the entries within each row are also
independent. To verify, note that each entry of SU is a Gaussian random variable, and Gaussian
random variables are independent if they are uncorrelated. It is easy to verify that the entries in
each row are uncorrelated as the columns of U are orthogonal.

Let Ax − b = Uy. Note that ‖ Uy ‖2=‖ y ‖2 as U is orthonormal. We need to ensure that
‖ SUy ‖2≈‖ y ‖2. If all the singular values of SU ∈ [1− ε, 1 + ε], then ‖ SUy ‖2≈‖ y ‖2. By using
an ε−net argument, Rudelson and Vershynin [4] showed that taking r = O(ε−2d) suffices to ensure
that all the singular values of SU ∈ [1− ε, 1 + ε], with probability 1− e−d. Hence `2 distances are
approximately preserved under this transformation.

In order to speed-up the projection step, we can now use the FJLT instead of the JLT. This brings
the total time to O(rd log d) + poly(d/ε), which has no dependence on n and can be a significant
saving if the number of constraints/observations n is large.

In the next lecture we’ll see a further improvement of the result due to Clarkson and Woodruff [5]
who obtained a surprising runtime of O(nnz(A)) + poly(d/ε). They used the count-sketch matrix
for their construction.
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