Lecture 19: Sparse Subspace Embeddings

Prof. Moses Charikar
Scribes: Colin Wei

1 Overview

In this lecture, we discuss algorithms to produce a subspace embedding for the column space of a matrix A. The algorithm given by Clarkson and Woodruff [3] uses the count sketch matrix to produce a subspace embedding that runs in time $O(\mathrm{nnZ}(A)+\operatorname{poly}(d / \epsilon))$. We present a proof that the algorithm works with high probability.

2 Preliminaries

Definition 1. Let A be a n by d matrix. $A(1 \pm \epsilon)-l_{2}$ subspace embedding for the column space of A is S such that $\forall x \in \mathbb{R}^{d}$

$$
(1-\epsilon)\|A x\|_{2}^{2} \leq\|S A x\|_{2}^{2} \leq(1+\epsilon)\|A x\|_{2}^{2}
$$

We can let U be a matrix with orthonormal columns such that colspace $(U)=\operatorname{colspace}(A)$. Then the requirement for $(1 \pm \epsilon)-l_{2}$ subspace embedding becomes:

$$
\|S U y\|_{2}^{2} \in\left[(1-\epsilon)\|U y\|_{2}^{2},(1+\epsilon)\|U y\|_{2}^{2}\right]=\left[(1-\epsilon)\|y\|_{2}^{2},(1+\epsilon)\|y\|_{2}^{2}\right]
$$

Equivalently, we could also require $\left\|I_{d}-U^{T} S^{T} S U\right\|_{2} \leq \epsilon$.
Definition 2. Let π be a distribution on r by n matrices S, where $r=f(n, d, \epsilon, \delta)$ for some function f. Suppose that with probability $\geq 1-\delta$ and any fixed n by d matrix $A, S \sim \pi$ is a $(1 \pm \epsilon)-l_{2}$ subspace embedding for A. Then π is called an (ϵ, δ)-oblivious subspace embedding.

Examples of oblivious subspace embeddings include when the entries of S are i.i.d. Gaussian, S is a FJLT matrix, or when S is a P.H.D. matrix.

3 Sparse Embedding Matrix

In the setting where the matrix A is sparse, [3] provide an embedding which can be computed in time $O(\mathrm{nnZ}(A))$, the number of nonzero elements in the matrix A. The embedding can be computed by the count-sketch or sparse-embedding matrix, which is a r by n matrix constructed as follows: let $h:[n] \rightarrow[r]$ and $\sigma:[n] \rightarrow\{-1,1\}$ be hash functions. Then the i-th column of the sparse embedding matrix S is nonzero only in the $h(i)$-th row. This nonzero entry has value $\sigma(i)$. We can see from this construction that the product $S A$ can be computed in $O(\mathrm{nnZ}(A))$ time because each non-zero entry in A is multiplied by at most one nonzero entry in S. The following theorem holds:

Theorem 3. Let S be the sparse embedding matrix of dimension r by n, where $r=O\left(\frac{d}{\epsilon^{2}}\right.$ polylog $\left.\left(\frac{d}{\epsilon}\right)\right)$. Then for any fixed A, S is a $(1 \pm \epsilon)-l_{2}$ subspace embedding for A with constant probability.

We discuss the following slightly different result:
Theorem 4. Let S be the sparse embedding matrix with $r=O\left(\frac{d^{2}}{\epsilon^{2} \delta}\right)$ rows. Then with probability $1-\delta$ for any fixed A, S is a $\left(1 \pm \epsilon^{\prime}\right)-l_{2}$ subspace embedding for the columns of A.

For this theorem to hold, h needs to be a 2-wise independent hash function, and σ needs to be a 4 -wise independent hash function.

Proof Sketch due to [3]. The proof in [3] proceeds by bounding

$$
P\left(\left\|I_{d}-U^{T} S^{T} S U\right\|_{2}>\epsilon\right)=P\left(\left\|I_{d}-U^{T} S^{T} S U\right\|_{2}^{l}>\epsilon^{l}\right)
$$

using trace inequalities.

We present a different, simpler proof by [2], which leverages the machinery of approximate matrix multiplication.

Definition 5. We say that C is an ϵ-approximate matrix product of A, B if it satisfies

$$
\left\|A^{T} B-C\right\|_{F} \leq \epsilon\|A\|_{F}\|B\|_{F}
$$

The idea to compute a approximate matrix product is to maintain sketches $S A, S B$ of the original matrices, where we want $E\left[A^{T} S^{T} S B\right]=A^{T} B . S$ is an r by n matrix, and we want to bound the size of r needed to get a good approximation with high probability.
Definition 6. [4] A distribution \mathcal{D} on $S \in \mathbb{R}^{k x d}$ is said to satisfy the (ϵ, δ, l)-JL moment property if $\forall x \in \mathcal{R}^{d}$ where $\|x\|_{2}=1, E\left[\left(\|S x\|_{2}^{2}-1\right)^{l}\right] \leq \epsilon^{l} \delta$.
Definition 7. For a scalar random variable X, let $\|X\|_{p}=E\left[|X|^{p}\right]^{1 / p}$. $\|\cdot\|_{p}$ is a metric, so $\|X+Y\|_{p} \leq\|X\|_{p}+\|Y\|_{p}$.
Lemma 8. Let $l \geq 2, \epsilon, \delta \in(0,1 / 2)$, and \mathcal{D} be a distribution that satisfies the (ϵ, δ, l)-JL moment property. Then for A, B with d rows,

$$
P_{S \sim D}\left[\left\|A^{T} S^{T} S B-A^{T} B\right\|_{F}>3 \epsilon\|A\|_{F}\|B\|_{F}\right] \leq \delta
$$

Proof. We first note that for $x, y \in \mathbb{R}^{d},\langle S x, S y\rangle=\frac{1}{2}\left(\|S x\|_{2}^{2}+\|S y\|_{2}^{2}-\|S(x-y)\|_{2}^{2}\right)$. Thus,

$$
\begin{aligned}
\|\langle S x, S y\rangle-\langle x, y\rangle\|_{l} & =\frac{1}{2}\left\|\left(\|S x\|_{2}^{2}-1\right)+\left(\|S y\|_{2}^{2}-1\right)-\left(\|S(x-y)\|_{2}^{2}-\|x-y\|_{2}^{2}\right)\right\|_{l} \\
& \leq \frac{1}{2}\left(\| \| S x\left\|_{2}^{2}-1\right\|_{l}+\| \| S y\left\|_{2}^{2}-1\right\|_{l}+\| \| S(x-y)\left\|_{2}^{2}-\right\| x-y\left\|_{2}^{2}\right\|_{l}\right) \\
& \leq \frac{1}{2}\left(\epsilon \delta^{1 / l}+\epsilon \delta^{1 / l}+\|x-y\|_{2}^{2} \epsilon \delta^{1 / l}\right. \\
& \leq 3 \epsilon \delta^{1 / l}
\end{aligned}
$$

where we first apply triangle inequality and then apply the JL moment property. From this, we can conclude that for arbitrary x, y,

$$
\|\langle S x, S y\rangle-\langle x, y\rangle\|_{l} \leq 3 \epsilon \delta^{1 / l}\|x\|_{2}\|y\|_{2}
$$

Now since the $i j$-th entry of $A^{T} B$ is given by $\left\langle A^{i}, B^{j}\right\rangle$, the inner product of the i-th column of A and the j-th column of B, we have that

$$
\begin{aligned}
\left\|\left\|A^{T} S^{T} S B-A^{T} B\right\|_{F}^{2}\right\|_{l / 2} & \leq \sum_{i j}\left\|\left(\left\langle S A^{i}, S B^{j}\right\rangle-\left\langle A^{i}, B^{j}\right\rangle\right)^{2}\right\|_{l / 2} \\
& \leq\left(3 \epsilon \delta^{1 / l}\right)^{2} \sum_{i j}\left\|A^{i}\right\|_{2}^{2}\left\|B^{j}\right\|_{2}^{2} \\
& =\left(3 \epsilon \delta^{1 / l}\right)^{2}\|A\|_{F}^{2}\|B\|_{F}^{2}
\end{aligned}
$$

where the first line follows from triangle inequality, and the second from plugging in the inequality derived previously. Now we plug this into Markov's inequality to get that

$$
\begin{aligned}
P\left[\left\|A^{T} S^{T} S B-A^{T} B\right\|_{F}^{l}>(3 \epsilon)^{l}\|A\|_{F}^{l}\|B\|_{F}^{l}\right] & \leq \frac{1}{\left(3 \epsilon\|A\|_{F}\|B\|_{F}\right)^{l}} E\left[\left\|A^{T} S^{T} S B-A^{T} B\right\|_{F}^{l}\right] \\
& \leq \delta
\end{aligned}
$$

Now we are ready to prove Theorem 4.
Proof of Theorem 4. We want to show that if S is the sparse embedding matrix with at least $\frac{2}{\epsilon^{2} \delta}$ rows, S satisfies the $(\epsilon, \delta, 2)$-JL moment property. We need to show that for a unit vector x with $\|x\|_{2}=1, E\left[\left(\|S x\|_{2}^{2}-1\right)^{2}\right] \leq \epsilon^{2} \delta$. We do this by expanding to get $E\left[\|S x\|_{2}^{4}\right]-2 E\left[\|S x\|_{2}^{2}\right]+1$; the middle term is 1 and from expansion we can show that $E\left[\|S x\|_{2}^{4}\right] \leq 1+\frac{2}{r}$, so $E\left[\left(\|S x\|_{2}^{2}-1\right)^{2}\right] \leq \frac{2}{r}$. Thus, if $r>\frac{2}{\epsilon^{2} \delta}$, the $(\epsilon, \delta, 2)-$ JL moment property holds.

Let U be an orthonormal basis for the columns of A. Now since S satisfies the $(\epsilon, \delta, 2)$-JL moment property,

$$
\begin{array}{r}
P\left[\left\|U^{T} S^{T} S U-U^{T} U\right\|_{F}>3 \epsilon\|U\|_{F}^{l}\|U\|_{F}\right] \leq \delta \\
\Longrightarrow P\left[\left\|U^{T} S^{T} S U-I_{d}\right\|_{F}>3 \epsilon d\right] \leq \delta
\end{array}
$$

So with $\epsilon=\frac{\epsilon^{\prime}}{d}$, we get $r=O\left(\frac{d^{2}}{\epsilon^{\prime 2} \delta}\right)$ rows needed.

References

[1] Sketching as a Tool for Numerical Linear Algebra, David P. Woodruff, Foundations and Trends in Theoretical Computer Science, 2014.
[2] OSNAP: Faster numerical linear algebra algorithms via sparser subspace embeddings, J. Nelson and H.L. Nguyen, FOCS 2013.
[3] Low Rank Approximation and Regression in Input Sparsity Time, K.L. Clarkson and D.P. Woodruff, STOC 2013.
[4] A Sparser Johnson-Lindenstrauss Transform, Daniel M. Kane and Jelani Nelson, 2010.

