CS369G: Algorithmic Techniques for Big Data	Spring 2015-2016
Lecture 19: Sparse Subspace Embedd	ings
Prof. Moses Charikar	Scribes: Colin Wei

1 Overview

In this lecture, we discuss algorithms to produce a subspace embedding for the column space of a matrix A. The algorithm given by Clarkson and Woodruff [3] uses the count sketch matrix to produce a subspace embedding that runs in time $O(\text{nnZ}(A) + \text{poly}(d/\epsilon))$. We present a proof that the algorithm works with high probability.

2 Preliminaries

Definition 1. Let A be a n by d matrix. A $(1 \pm \epsilon) - l_2$ subspace embedding for the column space of A is S such that $\forall x \in \mathbb{R}^d$

$$(1-\epsilon) \|Ax\|_2^2 \le \|SAx\|_2^2 \le (1+\epsilon) \|Ax\|_2^2$$

We can let U be a matrix with orthonormal columns such that colspace(U) = colspace(A). Then the requirement for $(1 \pm \epsilon) - l_2$ subspace embedding becomes:

$$\|SUy\|_{2}^{2} \in [(1-\epsilon)\|Uy\|_{2}^{2}, (1+\epsilon)\|Uy\|_{2}^{2}] = [(1-\epsilon)\|y\|_{2}^{2}, (1+\epsilon)\|y\|_{2}^{2}]$$

Equivalently, we could also require $||I_d - U^T S^T S U||_2 \le \epsilon$.

Definition 2. Let π be a distribution on r by n matrices S, where $r = f(n, d, \epsilon, \delta)$ for some function f. Suppose that with probability $\geq 1 - \delta$ and any fixed n by d matrix A, $S \sim \pi$ is a $(1 \pm \epsilon) - l_2$ subspace embedding for A. Then π is called an (ϵ, δ) -oblivious subspace embedding.

Examples of oblivious subspace embeddings include when the entries of S are i.i.d. Gaussian, S is a FJLT matrix, or when S is a P.H.D. matrix.

3 Sparse Embedding Matrix

In the setting where the matrix A is sparse, [3] provide an embedding which can be computed in time O(nnZ(A)), the number of nonzero elements in the matrix A. The embedding can be computed by the count-sketch or sparse-embedding matrix, which is a r by n matrix constructed as follows: let $h : [n] \to [r]$ and $\sigma : [n] \to \{-1,1\}$ be hash functions. Then the *i*-th column of the sparse embedding matrix S is nonzero only in the h(i)-th row. This nonzero entry has value $\sigma(i)$. We can see from this construction that the product SA can be computed in O(nnZ(A)) time because each non-zero entry in A is multiplied by at most one nonzero entry in S. The following theorem holds: **Theorem 3.** Let S be the sparse embedding matrix of dimension r by n, where $r = O\left(\frac{d}{\epsilon^2} polylog\left(\frac{d}{\epsilon}\right)\right)$. Then for any fixed A, S is a $(1 \pm \epsilon) - l_2$ subspace embedding for A with constant probability.

We discuss the following slightly different result:

Theorem 4. Let S be the sparse embedding matrix with $r = O\left(\frac{d^2}{\epsilon'^2\delta}\right)$ rows. Then with probability $1 - \delta$ for any fixed A, S is a $(1 \pm \epsilon') - l_2$ subspace embedding for the columns of A.

For this theorem to hold, h needs to be a 2-wise independent hash function, and σ needs to be a 4-wise independent hash function.

Proof Sketch due to [3]. The proof in [3] proceeds by bounding

$$P(||I_d - U^T S^T S U||_2 > \epsilon) = P(||I_d - U^T S^T S U||_2^l > \epsilon^l)$$

using trace inequalities.

We present a different, simpler proof by [2], which leverages the machinery of approximate matrix multiplication.

Definition 5. We say that C is an ϵ -approximate matrix product of A, B if it satisfies

$$||A^T B - C||_F \le \epsilon ||A||_F ||B||_F$$

The idea to compute a approximate matrix product is to maintain sketches SA, SB of the original matrices, where we want $E[A^TS^TSB] = A^TB$. S is an r by n matrix, and we want to bound the size of r needed to get a good approximation with high probability.

Definition 6. [4] A distribution \mathcal{D} on $S \in \mathbb{R}^{kxd}$ is said to satisfy the (ϵ, δ, l) -JL moment property if $\forall x \in \mathcal{R}^d$ where $\|x\|_2 = 1$, $E[(\|Sx\|_2^2 - 1)^l] \leq \epsilon^l \delta$.

Definition 7. For a scalar random variable X, let $||X||_p = E[|X|^p]^{1/p}$. $||\cdot||_p$ is a metric, so $||X+Y||_p \le ||X||_p + ||Y||_p$.

Lemma 8. Let $l \geq 2$, $\epsilon, \delta \in (0, 1/2)$, and \mathcal{D} be a distribution that satisfies the (ϵ, δ, l) -JL moment property. Then for A, B with d rows,

$$P_{S\sim D}\left[\|A^T S^T S B - A^T B\|_F > 3\epsilon \|A\|_F \|B\|_F\right] \le \delta$$

Proof. We first note that for $x, y \in \mathbb{R}^d$, $\langle Sx, Sy \rangle = \frac{1}{2} \left(\|Sx\|_2^2 + \|Sy\|_2^2 - \|S(x-y)\|_2^2 \right)$. Thus,

$$\begin{split} \|\langle Sx, Sy \rangle - \langle x, y \rangle \|_{l} &= \frac{1}{2} \|(\|Sx\|_{2}^{2} - 1) + (\|Sy\|_{2}^{2} - 1) - (\|S(x - y)\|_{2}^{2} - \|x - y\|_{2}^{2})\|_{l} \\ &\leq \frac{1}{2} \left(\|\|Sx\|_{2}^{2} - 1\|_{l} + \|\|Sy\|_{2}^{2} - 1\|_{l} + \|\|S(x - y)\|_{2}^{2} - \|x - y\|_{2}^{2}\|_{l} \right) \\ &\leq \frac{1}{2} (\epsilon \delta^{1/l} + \epsilon \delta^{1/l} + \|x - y\|_{2}^{2} \epsilon \delta^{1/l} \\ &\leq 3\epsilon \delta^{1/l} \end{split}$$

where we first apply triangle inequality and then apply the JL moment property. From this, we can conclude that for arbitrary x, y,

$$\|\langle Sx, Sy \rangle - \langle x, y \rangle\|_l \le 3\epsilon \delta^{1/l} \|x\|_2 \|y\|_2$$

Now since the *ij*-th entry of $A^T B$ is given by $\langle A^i, B^j \rangle$, the inner product of the *i*-th column of A and the *j*-th column of B, we have that

$$\begin{aligned} \|\|A^T S^T S B - A^T B\|_F^2 \|_{l/2} &\leq \sum_{ij} \|(\langle S A^i, S B^j \rangle - \langle A^i, B^j \rangle)^2 \|_{l/2} \\ &\leq (3\epsilon \delta^{1/l})^2 \sum_{ij} \|A^i\|_2^2 \|B^j\|_2^2 \\ &= (3\epsilon \delta^{1/l})^2 \|A\|_F^2 \|B\|_F^2 \end{aligned}$$

where the first line follows from triangle inequality, and the second from plugging in the inequality derived previously. Now we plug this into Markov's inequality to get that

$$P[\|A^{T}S^{T}SB - A^{T}B\|_{F}^{l} > (3\epsilon)^{l}\|A\|_{F}^{l}\|B\|_{F}^{l}] \le \frac{1}{(3\epsilon\|A\|_{F}\|B\|_{F})^{l}}E[\|A^{T}S^{T}SB - A^{T}B\|_{F}^{l}] \le \delta$$

Г	٦
L	_

Now we are ready to prove Theorem 4.

Proof of Theorem 4. We want to show that if S is the sparse embedding matrix with at least $\frac{2}{\epsilon^2 \delta}$ rows, S satisfies the $(\epsilon, \delta, 2)$ -JL moment property. We need to show that for a unit vector x with $||x||_2 = 1$, $E[(||Sx||_2^2 - 1)^2] \leq \epsilon^2 \delta$. We do this by expanding to get $E[||Sx||_2^4] - 2E[||Sx||_2^2] + 1$; the middle term is 1 and from expansion we can show that $E[||Sx||_2^4] \leq 1 + \frac{2}{r}$, so $E[(||Sx||_2^2 - 1)^2] \leq \frac{2}{r}$. Thus, if $r > \frac{2}{\epsilon^2 \delta}$, the $(\epsilon, \delta, 2)$ -JL moment property holds.

Let U be an orthonormal basis for the columns of A. Now since S satisfies the $(\epsilon, \delta, 2)$ -JL moment property,

$$P[\|U^T S^T S U - U^T U\|_F > 3\epsilon \|U\|_F^l \|U\|_F] \le \delta$$

$$\implies P[\|U^T S^T S U - I_d\|_F > 3\epsilon d] \le \delta$$

So with $\epsilon = \frac{\epsilon'}{d}$, we get $r = O\left(\frac{d^2}{\epsilon'^2 \delta}\right)$ rows needed. \Box

References

- [1] Sketching as a Tool for Numerical Linear Algebra, David P. Woodruff, Foundations and Trends in Theoretical Computer Science, 2014.
- [2] OSNAP: Faster numerical linear algebra algorithms via sparser subspace embeddings, J. Nelson and H.L. Nguyen, FOCS 2013.

- [3] Low Rank Approximation and Regression in Input Sparsity Time, K.L. Clarkson and D.P. Woodruff, STOC 2013.
- [4] A Sparser Johnson-Lindenstrauss Transform, Daniel M. Kane and Jelani Nelson, 2010.