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1 Overview

In this lecture, we discuss algorithms to produce a subspace embedding for the column space of
a matrix A. The algorithm given by Clarkson and Woodruff [3] uses the count sketch matrix to
produce a subspace embedding that runs in time O(nnZ(A) + poly(d/e)). We present a proof that
the algorithm works with high probability.

2 Preliminaries

Definition 1. Let A be a n by d matriz. A (1+¢€) — Iy subspace embedding for the column space
of A is S such that Va € R?

(1= llAz]l3 < [[SAz|3 < (1+ )| Ax]3

We can let U be a matrix with orthonormal columns such that colspace(U) = colspace(A). Then
the requirement for (1 4 €) — Iy subspace embedding becomes:

ISUII3 € [(1 = e)lUyl3, (1 +e)llUyl3] = [(1 = e)llyll3, (1 + €)llyl3]

Equivalently, we could also require ||I; — UTSTSU||s < e.

Definition 2. Let w be a distribution onr by n matrices S, where r = f(n,d,€,d) for some function
f- Suppose that with probability > 1 — § and any fired n by d matrix A, S ~ 7 is a (1 £e€) — Iy
subspace embedding for A. Then m is called an (e, 0)-oblivious subspace embedding.

Examples of oblivious subspace embeddings include when the entries of S are i.i.d. Gaussian, S is
a FJLT matrix, or when S is a P.H.D. matrix.

3 Sparse Embedding Matrix

In the setting where the matrix A is sparse, [3] provide an embedding which can be computed
in time O(nnZ(A)), the number of nonzero elements in the matrix A. The embedding can be
computed by the count-sketch or sparse-embedding matrix, which is a r by n matrix constructed
as follows: let h : [n] — [r] and o : [n] — {—1,1} be hash functions. Then the i-th column of
the sparse embedding matrix S is nonzero only in the h(i)-th row. This nonzero entry has value
o(i). We can see from this construction that the product SA can be computed in O(nnZ(A)) time
because each non-zero entry in A is multiplied by at most one nonzero entry in S. The following
theorem holds:



Theorem 3. Let S be the sparse embedding matrix of dimension r by n, wherer = O <Cipolylog <d)> .
€ €
Then for any fivred A, S is a (1 £ €) — lo subspace embedding for A with constant probability.

We discuss the following slightly different result:
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d
Theorem 4. Let S be the sparse embedding matriz with r = O (’25) rows. Then with probability
€

1 — 0 for any fivred A, S is a (14 ¢€') — Iy subspace embedding for the columns of A.

For this theorem to hold, A needs to be a 2-wise independent hash function, and ¢ needs to be a
4-wise independent hash function.

Proof Sketch due to [3]. The proof in [3] proceeds by bounding

P(|I;—UTSTSU||y > €) = P(||I; — UTSTSU|, > €)
using trace inequalities. O
We present a different, simpler proof by [2], which leverages the machinery of approximate matrix
multiplication.

Definition 5. We say that C is an e-approximate matrixz product of A, B if it satisfies
IATB = Cllr < €| Allr| Bl

The idea to compute a approximate matrix product is to maintain sketches SA, SB of the original
matrices, where we want E[ATSTSB] = ATB. S is an r by n matrix, and we want to bound the
size of r needed to get a good approximation with high probability.

Definition 6. [{] A distribution D on S € R¥? is said to satisfy the (e, d,1)-JL moment property
if Vo € R where ||z|ls = 1, E[(||Sz|j3 — 1)'] < €.

Definition 7. For a scalar random variable X, let | X||, = E[|X|PMP. | - ll, is a metric, so
X+ Yl <Xl + Y lp-

Lemma 8. Let | > 2, ¢,6 € (0,1/2), and D be a distribution that satisfies the (e€,9,1)-JL moment
property. Then for A, B with d rows,

Ps.p [|ATSTSB — ATB||r > 3¢||A||r||B|lr] <6

(1S3 + [1Syl5 = 1S (@ = y)|[3)- Thus,

[N

Proof. We first note that for z,y € R%, (S, Sy) =

{5z, 5y) — (=, y)ll = %H(IIS:vII% =1+ (15913 = 1) = (IS(z = »)II3 = llz = yl3)Il

1
5 (8215 = 1+ 11Syl2 = 1+ 1Sz = w3 = lle = yl3ll)

IN

IN

1
5(651/1 + s/t 4 |z — yH%e(Sl/l

< 3¢5t/



where we first apply triangle inequality and then apply the JL moment property. From this, we
can conclude that for arbitrary z, vy,

(S, Sy) = (z, 9l < 3¢5 |z]|2]lyll2

Now since the ij-th entry of AT B is given by (A%, B7), the inner product of the i-th column of A
and the j-th column of B, we have that

IIATSTSB = ATB[%]12 < Y II((SA', SBY) — (A", BY))? Iy
ij
< (3ed"1)2 Y IIAI31B13
ij
= (3% Al% | B

where the first line follows from triangle inequality, and the second from plugging in the inequality
derived previously. Now we plug this into Markov’s inequality to get that

1
(BellAllp[| Bl r)
<4

P[|ATSTSB — ATB|p > (3¢)'|| Allxl| Bl < (ElATSTSB — AT B

Now we are ready to prove Theorem 4.

2
Proof of Theorem 4. We want to show that if S is the sparse embedding matrix with at least 25

€
rows, S satisfies the (e, d,2)-JL moment property. We need to show that for a unit vector x with

|zll2 = 1, E[(||Sz|3 — 1)?] < €25. We do this by expanding to get E[||Sz|3] — 2E[||Sz||3] + 1; the
middle term is 1 and from expansion we can show that E[[|Sz||3] < 14 =, so E[([|Sz||3 —1)?] < =.
r r

2
Thus, if r > a5 the (e, d,2)-JL moment property holds.
€

Let U be an orthonormal basis for the columns of A. Now since S satisfies the (e, d,2)-JL moment
property,

P(|UTSTSU = UTU|p > 3¢|U|[%|U|] < 6
— P[|UTSTSU — I||r > 3ed] < §
¢ d?
So with € = Fi get r =0 (6/25> rows needed. O
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