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1 Overview

In this lecture, we discuss algorithms to produce a subspace embedding for the column space of
a matrix A. The algorithm given by Clarkson and Woodruff [3] uses the count sketch matrix to
produce a subspace embedding that runs in time O(nnZ(A) + poly(d/ε)). We present a proof that
the algorithm works with high probability.

2 Preliminaries

Definition 1. Let A be a n by d matrix. A (1 ± ε) − l2 subspace embedding for the column space
of A is S such that ∀x ∈ Rd

(1− ε)‖Ax‖22 ≤ ‖SAx‖22 ≤ (1 + ε)‖Ax‖22

We can let U be a matrix with orthonormal columns such that colspace(U) = colspace(A). Then
the requirement for (1± ε)− l2 subspace embedding becomes:

‖SUy‖22 ∈ [(1− ε)‖Uy‖22, (1 + ε)‖Uy‖22] = [(1− ε)‖y‖22, (1 + ε)‖y‖22]

Equivalently, we could also require ‖Id − UTSTSU‖2 ≤ ε.

Definition 2. Let π be a distribution on r by n matrices S, where r = f(n, d, ε, δ) for some function
f . Suppose that with probability ≥ 1 − δ and any fixed n by d matrix A, S ∼ π is a (1 ± ε) − l2
subspace embedding for A. Then π is called an (ε, δ)-oblivious subspace embedding.

Examples of oblivious subspace embeddings include when the entries of S are i.i.d. Gaussian, S is
a FJLT matrix, or when S is a P.H.D. matrix.

3 Sparse Embedding Matrix

In the setting where the matrix A is sparse, [3] provide an embedding which can be computed
in time O(nnZ(A)), the number of nonzero elements in the matrix A. The embedding can be
computed by the count-sketch or sparse-embedding matrix, which is a r by n matrix constructed
as follows: let h : [n] → [r] and σ : [n] → {−1, 1} be hash functions. Then the i-th column of
the sparse embedding matrix S is nonzero only in the h(i)-th row. This nonzero entry has value
σ(i). We can see from this construction that the product SA can be computed in O(nnZ(A)) time
because each non-zero entry in A is multiplied by at most one nonzero entry in S. The following
theorem holds:
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Theorem 3. Let S be the sparse embedding matrix of dimension r by n, where r = O

(
d

ε2
polylog

(
d

ε

))
.

Then for any fixed A, S is a (1± ε)− l2 subspace embedding for A with constant probability.

We discuss the following slightly different result:

Theorem 4. Let S be the sparse embedding matrix with r = O

(
d2

ε′2δ

)
rows. Then with probability

1− δ for any fixed A, S is a (1± ε′)− l2 subspace embedding for the columns of A.

For this theorem to hold, h needs to be a 2-wise independent hash function, and σ needs to be a
4-wise independent hash function.

Proof Sketch due to [3]. The proof in [3] proceeds by bounding

P (‖Id − UTSTSU‖2 > ε) = P (‖Id − UTSTSU‖l2 > εl)

using trace inequalities.

We present a different, simpler proof by [2], which leverages the machinery of approximate matrix
multiplication.

Definition 5. We say that C is an ε-approximate matrix product of A,B if it satisfies

‖ATB − C‖F ≤ ε‖A‖F ‖B‖F

The idea to compute a approximate matrix product is to maintain sketches SA, SB of the original
matrices, where we want E[ATSTSB] = ATB. S is an r by n matrix, and we want to bound the
size of r needed to get a good approximation with high probability.

Definition 6. [4] A distribution D on S ∈ Rkxd is said to satisfy the (ε, δ, l)-JL moment property
if ∀x ∈ Rd where ‖x‖2 = 1, E[(‖Sx‖22 − 1)l] ≤ εlδ.

Definition 7. For a scalar random variable X, let ‖X‖p = E[|X|p]1/p. ‖ · ‖p is a metric, so
‖X + Y ‖p ≤ ‖X‖p + ‖Y ‖p.

Lemma 8. Let l ≥ 2, ε, δ ∈ (0, 1/2), and D be a distribution that satisfies the (ε, δ, l)-JL moment
property. Then for A,B with d rows,

PS∼D
[
‖ATSTSB −ATB‖F > 3ε‖A‖F ‖B‖F

]
≤ δ

Proof. We first note that for x, y ∈ Rd, 〈Sx, Sy〉 =
1

2

(
‖Sx‖22 + ‖Sy‖22 − ‖S(x− y)‖22

)
. Thus,

‖〈Sx, Sy〉 − 〈x, y〉‖l =
1

2
‖(‖Sx‖22 − 1) + (‖Sy‖22 − 1)− (‖S(x− y)‖22 − ‖x− y‖22)‖l

≤ 1

2

(
‖‖Sx‖22 − 1‖l + ‖‖Sy‖22 − 1‖l + ‖‖S(x− y)‖22 − ‖x− y‖22‖l

)
≤ 1

2
(εδ1/l + εδ1/l + ‖x− y‖22εδ1/l

≤ 3εδ1/l
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where we first apply triangle inequality and then apply the JL moment property. From this, we
can conclude that for arbitrary x, y,

‖〈Sx, Sy〉 − 〈x, y〉‖l ≤ 3εδ1/l‖x‖2‖y‖2

Now since the ij-th entry of ATB is given by 〈Ai, Bj〉, the inner product of the i-th column of A
and the j-th column of B, we have that

‖‖ATSTSB −ATB‖2F ‖l/2 ≤
∑
ij

‖(〈SAi, SBj〉 − 〈Ai, Bj〉)2‖l/2

≤ (3εδ1/l)2
∑
ij

‖Ai‖22‖Bj‖22

= (3εδ1/l)2‖A‖2F ‖B‖2F

where the first line follows from triangle inequality, and the second from plugging in the inequality
derived previously. Now we plug this into Markov’s inequality to get that

P [‖ATSTSB −ATB‖lF > (3ε)l‖A‖lF ‖B‖lF ] ≤ 1

(3ε‖A‖F ‖B‖F )l
E[‖ATSTSB −ATB‖lF ]

≤ δ

Now we are ready to prove Theorem 4.

Proof of Theorem 4. We want to show that if S is the sparse embedding matrix with at least
2

ε2δ
rows, S satisfies the (ε, δ, 2)-JL moment property. We need to show that for a unit vector x with
‖x‖2 = 1, E[(‖Sx‖22 − 1)2] ≤ ε2δ. We do this by expanding to get E[‖Sx‖42] − 2E[‖Sx‖22] + 1; the

middle term is 1 and from expansion we can show that E[‖Sx‖42] ≤ 1 +
2

r
, so E[(‖Sx‖22− 1)2] ≤ 2

r
.

Thus, if r >
2

ε2δ
, the (ε, δ, 2)-JL moment property holds.

Let U be an orthonormal basis for the columns of A. Now since S satisfies the (ε, δ, 2)-JL moment
property,

P [‖UTSTSU − UTU‖F > 3ε‖U‖lF ‖U‖F ] ≤ δ
=⇒ P [‖UTSTSU − Id‖F > 3εd] ≤ δ

So with ε =
ε′

d
, we get r = O

(
d2

ε′2δ

)
rows needed.
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