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1 Overview

In this lecture, we will review the sketch for F}, estimation when 0 < p < 2. We will show that this
algorithm could be implemented with small space via Nisan’s pseudorandom generator [1].

Next, we will present Andoni’s algorithm [2] for estimating the p > 2 frequency moment. The
algorithm approximates an n-dimensional [, norm with [, of an m-dimensional vector, where

m = O(nl_% -logn).

2 Recap for F, when 0 <p <2

Recall that in the last lecture, we construct the linear sketch for 0 < p < 2 frequency moment
based on p-stable distribution D,. A distribution D, is said to be p-stable if the following property

holds: Let Y7,...,Y, be independent random variables drawn from D,,, then Z x;Y; has the same

K3
distribution as ||z|[,Y, Y ~ D,. In the last lecture we presented the following algorithm to estimate
the p-th frequency moment.

Algorithm 1: F), estimate where 0 < p <2

X  (21,...2p) ;
ke O( log )
— O — .
2 08y
Let M be a k x n matrix where each M;; ~ D, ;
y «— Mx ;
median(|y1l, [y2l; - [yxl)

turn Y < |
return median(|Dp)) ’

Remark: Note that the matrix multiplication could be done in a streaming fashion. We start with
k

all-zero y, and for each z; take the i*" column of M and update y < y + Z M;jx;.
j=1

By the p-stability property we see that each y; ~ ||z||,Y where Y ~ D,. The following lemma
shows that the median of |y;|’s has good concentration properties.

Lemma 1. Let € > 0 and D), be a p-stable distribution. Let F(t) be the probability density function
of |Dy|, p be the median of |Dy|, and v = mine(,(1—e) p(1+e) F(t). Denotey = median(|y1|, [yzl, -, y|),
where y; are independent random variables drawn from D,. Then

N
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holds when k = © (12 log 1>
€ )

Proof. Let F(t) be the density function of |D,|, then F(t) is the density function of D, scaled by 2
ift >0and F(t) =0if t <O0. |y1|,..., |yx| ~ |Dp|. The median p is uniquely defined and it satisfies

F(t) is continuous on [(1 — €)u, (1 4 €)pu].

Pr(lyil <p(l—e)==— /M F(t)dt < % — apue
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Let v = ape, L be the number of |y;|’s that fall in the range of [0, u(1 — €)].

L=1{i: |yl <u(l—e)}
E[L] <k (; —7> = g(l —27)

Since y is the median of |y;|, ¥ < (1 — €)u only if more than half of |y;| are low, which is the same
as L > k/2.

Let 1+0 = .
et 1+ 1— 27

k 1

Pr(y<(l—e)u)=Pr <L > 2) = Pr <L > 15 E(L)) =Pr(L > (1+9)E(L))
— <y
Using Chernoff bound,
2 2 02622 (1—20c
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k= 0(62 log 5)

3 Derandomization of space bounded computation

In the algorithm described above we have to keep the entire matrix M around which is often too
expensive for streaming applications. However, given that the algorithm only needs to operate

on § = O( log1/4) bits, one can use pseudorandom generators instead of truly random bits to

reduce the required storage.



3.1 Nisan’s Pseudorandom Generator

Theorem 2. Let U, denote a uniformly random string in {0,1}". There exists h : {0,1}' —
{0,1}°F, t = Slog R.
Pr(f(Un) =1) = Pr(f(h(Un)) =1) <279

for any function f: {0,1}° — {0,1}.

In other words, the distribution of 2% states generated by a truly random string is indistinguishable
from the distribution of a Nisan pseudorandom generator.

The way Nisan works is as follows: Assume we have hy, ..., hiogn, Where h; : [25] — [2°] are pair-
wise independent hash functions. We choose a random sample x € {0, 1}S , place it at the root and
repeat the following procedure: on level i, create the left child as the same as its parent p and the
right child as h;(p). Using Nisan, we can take the seed of Slog R bits, expand it to SR bits such
that any chunk of .S bits can be generated in S'log R time.
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Figure 1: Nisan’s pseudorandom generator

4 p> 2 Frequency Moments via Max-stability

2
Andoni proposed an algorithm [2] to estimate F,, when p > 2 using space O(nle logn). The
algorithm consists of two-step mapping. Let x € R"™ be the input vector. Let w;’s be random

variables drawn from an exponential distribution with density e ¢, in the first step we scale each
1

x; by ul-_p ,
€Ty
Yi = i

Uy

In the second step, we compute z € R™ using a random hash function & : [n] — [m].
= Y. oiyi
ith(i)=j

where o; are random +1. The final estimator is given by m[ax] 12i| = |12l 00-
JjEIM



4.1 Analysis

We first claim the maxy; = ||y||« is a good estimate on ||z||,.
7

Lemma 3.

1
Pr([lyllec € [5112llp, 2[l2[lp]) 2
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exponential distribution e,

Proof. Let ¢ = min{ Up

U
1 |z [P

}. Given up,ug, ...u, are i.i.d random variables drawn from the

P(g > t) = P(Vi,u; > t|a;|")

n
— H 67t|xi|p
=1

Therefore,
Pzl < 9l < 2laly) = Ploe— < g < em )
g Mlip = l1¥llee ’ 203, |zl AL
:e_%—€_2p
3
>,
— 4
for p > 2.

In next lecture, we will show that the second step preserves ||y||o with good probability.
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