CS369G: Algorithmic Techniques for Big Data
Lecture 5: Moment estimation via Max-stability
Prof. Moses Charikar
Scribes: Jiakun Li

1 Overview

In this lecture, we will review the sketch for F_{p} estimation when $0<p \leq 2$. We will show that this algorithm could be implemented with small space via Nisan's pseudorandom generator [1].

Next, we will present Andoni's algorithm [2] for estimating the $p>2$ frequency moment. The algorithm approximates an n-dimensional l_{p} norm with l_{∞} of an m-dimensional vector, where $m=O\left(n^{1-\frac{2}{p}} \cdot \log n\right)$.

2 Recap for F_{p} when $0<p \leq 2$

Recall that in the last lecture, we construct the linear sketch for $0<p \leq 2$ frequency moment based on p-stable distribution \mathcal{D}_{p}. A distribution \mathcal{D}_{p} is said to be p-stable if the following property holds: Let Y_{1}, \ldots, Y_{n} be independent random variables drawn from \mathcal{D}_{p}, then $\sum_{i} x_{i} Y_{i}$ has the same distribution as $\|x\|_{p} Y, Y \sim \mathcal{D}_{p}$. In the last lecture we presented the following algorithm to estimate the p-th frequency moment.

```
Algorithm 1: \(F_{p}\) estimate where \(0<p \leq 2\)
    \(\mathbf{x} \leftarrow\left(x_{1}, \ldots x_{n}\right) ;\)
    \(k \leftarrow \Theta\left(\frac{1}{\epsilon^{2}} \log \frac{1}{\delta}\right) ;\)
    Let M be a \(\mathrm{k} \times \mathrm{n}\) matrix where each \(M_{i j} \sim \mathcal{D}_{p}\);
    \(\mathbf{y} \leftarrow M \mathbf{x}\);
    return \(Y \leftarrow\left[\frac{\text { median }\left(\left|y_{1}\right|,\left|y_{2}\right|, \ldots,\left|y_{k}\right|\right)}{\operatorname{median}\left(\left|\mathcal{D}_{p}\right|\right)}\right] ;\)
```

Remark: Note that the matrix multiplication could be done in a streaming fashion. We start with all-zero \mathbf{y}, and for each x_{i} take the $i^{\text {th }}$ column of M and update $\mathbf{y} \leftarrow \mathbf{y}+\sum_{j=1}^{k} M_{i j} x_{i}$.

By the p-stability property we see that each $y_{i} \sim\|x\|_{p} Y$ where $Y \sim \mathcal{D}_{p}$. The following lemma shows that the median of $\left|y_{i}\right|$'s has good concentration properties.
Lemma 1. Let $\epsilon>0$ and \mathcal{D}_{p} be a p-stable distribution. Let $F(t)$ be the probability density function of $\left|\mathcal{D}_{p}\right|, \mu$ be the median of $\left|\mathcal{D}_{p}\right|$, and $\alpha=\min _{t \in[\mu(1-\epsilon), \mu(1+\epsilon)]} F(t)$. Denote $y=$ median $\left(\left|y_{1}\right|,\left|y_{2}\right|, \ldots,\left|y_{k}\right|\right)$, where y_{i} are independent random variables drawn from \mathcal{D}_{p}. Then

$$
\operatorname{Pr}(y \leq(1-\epsilon) \mu) \leq \frac{\delta}{2}
$$

holds when $k=\Theta\left(\frac{1}{\epsilon^{2}} \log \frac{1}{\delta}\right)$
Proof. Let $F(t)$ be the density function of $\left|\mathcal{D}_{p}\right|$, then $\mathrm{F}(\mathrm{t})$ is the density function of \mathcal{D}_{p} scaled by 2 if $t \geq 0$ and $F(t)=0$ if $t<0 .\left|y_{1}\right|, \ldots,\left|y_{k}\right| \sim\left|\mathcal{D}_{p}\right|$. The median μ is uniquely defined and it satisfies

$$
\int_{0}^{\mu} F(t) d t=\frac{1}{2}
$$

$F(t)$ is continuous on $[(1-\epsilon) \mu,(1+\epsilon) \mu]$.

$$
\operatorname{Pr}\left(\left|y_{i}\right| \leq \mu(1-\epsilon)\right)=\frac{1}{2}-\int_{\mu(1-\epsilon)}^{\mu} F(t) d t \leq \frac{1}{2}-\alpha \mu \epsilon
$$

Let $\gamma=\alpha \mu \epsilon, L$ be the number of $\left|y_{i}\right|$'s that fall in the range of $[0, \mu(1-\epsilon)]$.

$$
\begin{aligned}
L & =\left|\left\{i:\left|y_{i}\right| \leq \mu(1-\epsilon)\right\}\right| \\
E[L] & \leq k\left(\frac{1}{2}-\gamma\right)=\frac{k}{2}(1-2 \gamma)
\end{aligned}
$$

Since y is the median of $\left|y_{i}\right|, y \leq(1-\epsilon) \mu$ only if more than half of $\left|y_{i}\right|$ are low, which is the same as $L>k / 2$.
Let $1+\delta=\frac{1}{1-2 \gamma}$.

$$
\operatorname{Pr}(y \leq(1-\epsilon) \mu)=\operatorname{Pr}\left(L>\frac{k}{2}\right)=\operatorname{Pr}\left(L>\frac{1}{1-2 \gamma} E(L)\right)=\operatorname{Pr}(L>(1+\delta) E(L))
$$

Using Chernoff bound,

$$
\begin{aligned}
\operatorname{Pr}(y \leq(1-\epsilon) \mu) \leq e^{\frac{-\delta^{2} E(L)}{3}} & \leq e^{\frac{-\gamma^{2} E(L)}{3}} \leq e^{-\frac{k}{2} \frac{\alpha^{2} \epsilon^{2} \mu^{2}(1-2 \alpha \epsilon \mu)}{3}}=e^{-c \epsilon^{2} k} \leq \frac{\delta}{2} \\
k & =O\left(\frac{1}{\epsilon^{2}} \log \frac{1}{\delta}\right)
\end{aligned}
$$

3 Derandomization of space bounded computation

In the algorithm described above we have to keep the entire matrix M around which is often too expensive for streaming applications. However, given that the algorithm only needs to operate on $S=O\left(\frac{1}{\epsilon^{2}} \log 1 / \delta\right)$ bits, one can use pseudorandom generators instead of truly random bits to reduce the required storage.

3.1 Nisan's Pseudorandom Generator

Theorem 2. Let U_{n} denote a uniformly random string in $\{0,1\}^{n}$. There exists $h:\{0,1\}^{t} \rightarrow$ $\{0,1\}^{S R}, t=S \log R$.

$$
\operatorname{Pr}\left(f\left(U_{n}\right)=1\right)-\operatorname{Pr}\left(f\left(h\left(U_{m}\right)\right)=1\right) \leq 2^{-O(S)}
$$

for any function $f:\{0,1\}^{S} \rightarrow\{0,1\}$.

In other words, the distribution of 2^{S} states generated by a truly random string is indistinguishable from the distribution of a Nisan pseudorandom generator.

The way Nisan works is as follows: Assume we have $h_{1}, \ldots, h_{\log n}$, where $h_{i}:\left[2^{S}\right] \rightarrow\left[2^{S}\right]$ are pairwise independent hash functions. We choose a random sample $x \in\{0,1\}^{S}$, place it at the root and repeat the following procedure: on level i, create the left child as the same as its parent p and the right child as $h_{i}(p)$. Using Nisan, we can take the seed of $S \log R$ bits, expand it to $S R$ bits such that any chunk of S bits can be generated in $S \log R$ time.

Figure 1: Nisan's pseudorandom generator

$4 \quad p>2$ Frequency Moments via Max-stability

Andoni proposed an algorithm [2] to estimate F_{p} when $p>2$ using space $O\left(n^{1-\frac{2}{p}} \log n\right)$. The algorithm consists of two-step mapping. Let $x \in \mathbb{R}^{n}$ be the input vector. Let u_{i} 's be random variables drawn from an exponential distribution with density e^{-t}, in the first step we scale each x_{i} by $u_{i}^{-\frac{1}{p}}$,

$$
y_{i}=\frac{x_{i}}{u_{i}^{1 / p}}
$$

In the second step, we compute $z \in \mathbb{R}^{m}$ using a random hash function $h:[n] \rightarrow[m]$.

$$
z_{j}=\sum_{i: h(i)=j} \sigma_{i} \cdot y_{i}
$$

where σ_{i} are random ± 1. The final estimator is given by $\max _{j \in[m]}\left|z_{j}\right|=\|z\|_{\infty}$.

4.1 Analysis

We first claim the $\max _{i} y_{i}=\|y\|_{\infty}$ is a good estimate on $\|x\|_{p}$.

Lemma 3.

$$
\operatorname{Pr}\left(\|y\|_{\infty} \in\left[\frac{1}{2}\|x\|_{p}, 2\|x\|_{p}\right]\right) \geq \frac{3}{4}
$$

Proof. Let $q=\min \left\{\frac{u_{1}}{\left|x_{1}\right|^{p}}, \ldots, \frac{u_{p}}{\left|x_{n}\right|^{p}}\right\}$. Given $u_{1}, u_{2}, \ldots u_{n}$ are i.i.d random variables drawn from the exponential distribution e^{-t},

$$
\begin{aligned}
P(q>t) & =P\left(\forall i, u_{i}>t\left|x_{i}\right|^{p}\right) \\
& =\prod_{i=1}^{n} e^{-t\left|x_{i}\right|^{p}} \\
& =e^{-t\left|x_{i}\right|_{p}^{p}}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
P\left(\frac{1}{2}\|x\|_{p} \leq\|y\|_{\infty}<2\|x\|_{p}\right) & =P\left(\frac{1}{2^{p} \sum_{i}\left|x_{i}\right|^{p}} \leq q \leq \frac{2^{p}}{\sum_{i}\left|x_{i}\right|^{p}}\right) \\
& =e^{-\frac{1}{2 p}}-e^{-2 p} \\
& \geq \frac{3}{4}
\end{aligned}
$$

for $p>2$.
In next lecture, we will show that the second step preserves $\|y\|_{\infty}$ with good probability.

References

[1] Nisan, Noam. "Pseudorandom generators for space-bounded computation." Combinatorica 12.4 (1992): 449-461.
[2] Andoni, Alexandr. "High frequency moment via max stability." Unpublished manuscript (2012).

