CS369G: Algorithmic Techniques for Big Data	Spring 2015-2016
Lecture 5: Moment estimation via Max-st	ability

Prof. Moses Charikar	Scribes: Jiakun Li
----------------------	--------------------

1 Overview

In this lecture, we will review the sketch for F_p estimation when 0 . We will show that this algorithm could be implemented with small space via Nisan's pseudorandom generator [1].

Next, we will present Andoni's algorithm [2] for estimating the p > 2 frequency moment. The algorithm approximates an n-dimensional l_p norm with l_{∞} of an m-dimensional vector, where $m = O(n^{1-\frac{2}{p}} \cdot \log n)$.

2 Recap for F_p when 0

Recall that in the last lecture, we construct the linear sketch for 0 frequency moment $based on p-stable distribution <math>\mathcal{D}_p$. A distribution \mathcal{D}_p is said to be p-stable if the following property holds: Let Y_1, \ldots, Y_n be independent random variables drawn from \mathcal{D}_p , then $\sum x_i Y_i$ has the same

distribution as $||x||_p Y$, $Y \sim \mathcal{D}_p$. In the last lecture we presented the following algorithm to estimate the *p*-th frequency moment.

Algorithm 1: F_p estimate where 0

 $\begin{aligned} \mathbf{x} &\leftarrow (x_1, \dots x_n) ;\\ k &\leftarrow \Theta(\frac{1}{\epsilon^2} \log \frac{1}{\delta}) ;\\ \text{Let M be a } \mathbf{k} \times \mathbf{n} \text{ matrix where each } M_{ij} \sim \mathcal{D}_p ;\\ \mathbf{y} &\leftarrow M \mathbf{x} ;\\ \text{return } Y \leftarrow \left[\frac{median(|y_1|, |y_2|, \dots, |y_k|)}{median(|\mathcal{D}_p|)} \right] ;\end{aligned}$

Remark: Note that the matrix multiplication could be done in a streaming fashion. We start with all-zero \mathbf{y} , and for each x_i take the i^{th} column of M and update $\mathbf{y} \leftarrow \mathbf{y} + \sum_{j=1}^k M_{ij} x_i$.

By the p-stability property we see that each $y_i \sim ||x||_p Y$ where $Y \sim \mathcal{D}_p$. The following lemma shows that the median of $|y_i|$'s has good concentration properties.

Lemma 1. Let $\epsilon > 0$ and \mathcal{D}_p be a *p*-stable distribution. Let F(t) be the probability density function of $|\mathcal{D}_p|$, μ be the median of $|\mathcal{D}_p|$, and $\alpha = \min_{t \in [\mu(1-\epsilon), \mu(1+\epsilon)]} F(t)$. Denote $y = median(|y_1|, |y_2|, ..., |y_k|)$, where y_i are independent random variables drawn from \mathcal{D}_p . Then

$$Pr(y \le (1 - \epsilon)\mu) \le \frac{\delta}{2}$$

holds when $k = \Theta\left(\frac{1}{\epsilon^2}\log\frac{1}{\delta}\right)$

Proof. Let F(t) be the density function of $|\mathcal{D}_p|$, then F(t) is the density function of \mathcal{D}_p scaled by 2 if $t \ge 0$ and F(t) = 0 if t < 0. $|y_1|, ..., |y_k| \sim |\mathcal{D}_p|$. The median μ is uniquely defined and it satisfies

$$\int_0^\mu F(t)dt = \frac{1}{2}$$

F(t) is continuous on $[(1 - \epsilon)\mu, (1 + \epsilon)\mu]$.

$$Pr(|y_i| \le \mu(1-\epsilon)) = \frac{1}{2} - \int_{\mu(1-\epsilon)}^{\mu} F(t)dt \le \frac{1}{2} - \alpha\mu\epsilon$$

Let $\gamma = \alpha \mu \epsilon$, L be the number of $|y_i|$'s that fall in the range of $[0, \mu(1-\epsilon)]$.

$$L = |\{i : |y_i| \le \mu(1 - \epsilon)\}|$$
$$E[L] \le k\left(\frac{1}{2} - \gamma\right) = \frac{k}{2}(1 - 2\gamma)$$

Since y is the median of $|y_i|, y \leq (1-\epsilon)\mu$ only if more than half of $|y_i|$ are low, which is the same as L > k/2.

Let
$$1 + \delta = \frac{1}{1 - 2\gamma}$$
.
 $Pr(y \le (1 - \epsilon)\mu) = Pr\left(L > \frac{k}{2}\right) = Pr\left(L > \frac{1}{1 - 2\gamma}E(L)\right) = Pr(L > (1 + \delta)E(L))$
Using Chernoff bound,

$$Pr(y \le (1-\epsilon)\mu) \le e^{\frac{-\delta^2 E(L)}{3}} \le e^{\frac{-\gamma^2 E(L)}{3}} \le e^{-\frac{k}{2}\frac{\alpha^2 \epsilon^2 \mu^2 (1-2\alpha\epsilon\mu)}{3}} = e^{-c\epsilon^2 k} \le \frac{\delta}{2}$$
$$k = O(\frac{1}{\epsilon^2}\log\frac{1}{\delta})$$

3 Derandomization of space bounded computation

In the algorithm described above we have to keep the entire matrix M around which is often too expensive for streaming applications. However, given that the algorithm only needs to operate on $S = O(\frac{1}{\epsilon^2} \log 1/\delta)$ bits, one can use pseudorandom generators instead of truly random bits to reduce the required storage.

3.1 Nisan's Pseudorandom Generator

Theorem 2. Let U_n denote a uniformly random string in $\{0,1\}^n$. There exists $h : \{0,1\}^t \to \{0,1\}^{SR}$, $t = S \log R$.

$$Pr(f(U_n) = 1) - Pr(f(h(U_m)) = 1) \le 2^{-O(S)}$$

for any function f: $\{0,1\}^S \to \{0,1\}$.

In other words, the distribution of 2^{S} states generated by a truly random string is indistinguishable from the distribution of a Nisan pseudorandom generator.

The way Nisan works is as follows: Assume we have $h_1, ..., h_{\log n}$, where $h_i : [2^S] \to [2^S]$ are pairwise independent hash functions. We choose a random sample $x \in \{0, 1\}^S$, place it at the root and repeat the following procedure: on level *i*, create the left child as the same as its parent *p* and the right child as $h_i(p)$. Using Nisan, we can take the seed of $S \log R$ bits, expand it to SR bits such that any chunk of *S* bits can be generated in $S \log R$ time.

Figure 1: Nisan's pseudorandom generator

4 p > 2 Frequency Moments via Max-stability

Andoni proposed an algorithm [2] to estimate F_p when p > 2 using space $O(n^{1-\frac{2}{p}} \log n)$. The algorithm consists of two-step mapping. Let $x \in \mathbb{R}^n$ be the input vector. Let u_i 's be random variables drawn from an exponential distribution with density e^{-t} , in the first step we scale each x_i by $u_i^{-\frac{1}{p}}$,

$$y_i = \frac{x_i}{u_i^{1/p}}$$

In the second step, we compute $z \in \mathbb{R}^m$ using a random hash function $h: [n] \to [m]$.

$$z_j = \sum_{i:h(i)=j} \sigma_i \cdot y_i$$

where σ_i are random ±1. The final estimator is given by $\max_{j \in [m]} |z_j| = ||z||_{\infty}$.

4.1 Analysis

We first claim the $\max_{i} y_i = ||y||_{\infty}$ is a good estimate on $||x||_p$.

Lemma 3.

$$Pr(||y||_{\infty} \in [\frac{1}{2}||x||_{p}, 2||x||_{p}]) \ge \frac{3}{4}$$

Proof. Let $q = \min\{\frac{u_1}{|x_1|^p}, ..., \frac{u_p}{|x_n|^p}\}$. Given $u_1, u_2, ...u_n$ are i.i.d random variables drawn from the exponential distribution e^{-t} ,

$$P(q > t) = P(\forall i, u_i > t | x_i |^p)$$
$$= \prod_{i=1}^n e^{-t |x_i|^p}$$
$$= e^{-t |x_i|^p}$$

Therefore,

$$\begin{split} P(\frac{1}{2} \|x\|_p &\leq \|y\|_{\infty} < 2\|x\|_p) = P(\frac{1}{2^p \sum_i |x_i|^p} \leq q \leq \frac{2^p}{\sum_i |x_i|^p}) \\ &= e^{-\frac{1}{2p}} - e^{-2p} \\ &\geq \frac{3}{4} \end{split}$$

for p > 2.

In next lecture, we will show that the second step preserves $\|y\|_{\infty}$ with good probability.

References

- Nisan, Noam. "Pseudorandom generators for space-bounded computation." Combinatorica 12.4 (1992): 449-461.
- [2] Andoni, Alexandr. "High frequency moment via max stability." Unpublished manuscript (2012).