
CS369G: Algorithmic Techniques for Big Data Spring 2015-2016

Lecture 5: Moment estimation via Max-stability

Prof. Moses Charikar Scribes: Jiakun Li

1 Overview

In this lecture, we will review the sketch for Fp estimation when 0 < p ≤ 2. We will show that this
algorithm could be implemented with small space via Nisan’s pseudorandom generator [1].

Next, we will present Andoni’s algorithm [2] for estimating the p > 2 frequency moment. The
algorithm approximates an n-dimensional lp norm with l∞ of an m-dimensional vector, where

m = O(n
1− 2

p · log n).

2 Recap for Fp when 0 < p ≤ 2

Recall that in the last lecture, we construct the linear sketch for 0 < p ≤ 2 frequency moment
based on p-stable distribution Dp. A distribution Dp is said to be p-stable if the following property

holds: Let Y1, . . . , Yn be independent random variables drawn from Dp, then
∑
i

xiYi has the same

distribution as ||x||pY , Y ∼ Dp. In the last lecture we presented the following algorithm to estimate
the p-th frequency moment.

Algorithm 1: Fp estimate where 0 < p ≤ 2

x← (x1, ...xn) ;

k ← Θ(
1

ε2
log

1

δ
) ;

Let M be a k × n matrix where each Mij ∼ Dp ;
y←Mx ;

return Y ←
[
median(|y1|, |y2|, ..., |yk|)

median(|Dp|)

]
;

Remark: Note that the matrix multiplication could be done in a streaming fashion. We start with

all-zero y, and for each xi take the ith column of M and update y← y +

k∑
j=1

Mijxi.

By the p-stability property we see that each yi ∼ ||x||pY where Y ∼ Dp. The following lemma
shows that the median of |yi|’s has good concentration properties.

Lemma 1. Let ε > 0 and Dp be a p-stable distribution. Let F (t) be the probability density function
of |Dp|, µ be the median of |Dp|, and α = mint∈[µ(1−ε),µ(1+ε)]F (t). Denote y = median(|y1|, |y2|, ..., |yk|),
where yi are independent random variables drawn from Dp. Then

Pr(y ≤ (1− ε)µ) ≤ δ

2

1

holds when k = Θ

(
1

ε2
log

1

δ

)

Proof. Let F (t) be the density function of |Dp|, then F(t) is the density function of Dp scaled by 2
if t ≥ 0 and F (t) = 0 if t < 0. |y1|, ..., |yk| ∼ |Dp|. The median µ is uniquely defined and it satisfies∫ µ

0
F (t)dt =

1

2

F (t) is continuous on [(1− ε)µ, (1 + ε)µ].

Pr (|yi| ≤ µ(1− ε)) =
1

2
−
∫ µ

µ(1−ε)
F (t)dt ≤ 1

2
− αµε

Let γ = αµε, L be the number of |yi|’s that fall in the range of [0, µ(1− ε)].

L = |{i : |yi| ≤ µ(1− ε)}|

E[L] ≤ k
(

1

2
− γ
)

=
k

2
(1− 2γ)

Since y is the median of |yi|, y ≤ (1− ε)µ only if more than half of |yi| are low, which is the same
as L > k/2.

Let 1 + δ =
1

1− 2γ
.

Pr(y ≤ (1− ε)µ) = Pr

(
L >

k

2

)
= Pr

(
L >

1

1− 2γ
E(L)

)
= Pr(L > (1 + δ)E(L))

Using Chernoff bound,

Pr(y ≤ (1− ε)µ) ≤ e
−δ2E(L)

3 ≤ e
−γ2E(L)

3 ≤ e−
k
2
α2ε2µ2(1−2αεµ)

3 = e−cε
2k ≤ δ

2

k = O(
1

ε2
log

1

δ
)

3 Derandomization of space bounded computation

In the algorithm described above we have to keep the entire matrix M around which is often too
expensive for streaming applications. However, given that the algorithm only needs to operate

on S = O(
1

ε2
log 1/δ) bits, one can use pseudorandom generators instead of truly random bits to

reduce the required storage.

2

3.1 Nisan’s Pseudorandom Generator

Theorem 2. Let Un denote a uniformly random string in {0, 1}n. There exists h : {0, 1}t →
{0, 1}SR, t = S logR.

Pr(f(Un) = 1)− Pr(f(h(Um)) = 1) ≤ 2−O(S)

for any function f: {0, 1}S → {0, 1}.

In other words, the distribution of 2S states generated by a truly random string is indistinguishable
from the distribution of a Nisan pseudorandom generator.

The way Nisan works is as follows: Assume we have h1, ..., hlogn, where hi : [2S] → [2S] are pair-
wise independent hash functions. We choose a random sample x ∈ {0, 1}S , place it at the root and
repeat the following procedure: on level i, create the left child as the same as its parent p and the
right child as hi(p). Using Nisan, we can take the seed of S logR bits, expand it to SR bits such
that any chunk of S bits can be generated in S logR time.

Figure 1: Nisan’s pseudorandom generator

4 p > 2 Frequency Moments via Max-stability

Andoni proposed an algorithm [2] to estimate Fp when p > 2 using space O(n
1− 2

p log n). The
algorithm consists of two-step mapping. Let x ∈ Rn be the input vector. Let ui’s be random
variables drawn from an exponential distribution with density e−t, in the first step we scale each

xi by u
− 1
p

i ,

yi =
xi

u
1/p
i

In the second step, we compute z ∈ Rm using a random hash function h : [n]→ [m].

zj =
∑

i:h(i)=j

σi · yi

where σi are random ±1. The final estimator is given by max
j∈[m]

|zj | = ‖z‖∞.

3

4.1 Analysis

We first claim the max
i
yi = ||y||∞ is a good estimate on ||x||p.

Lemma 3.

Pr(||y||∞ ∈ [
1

2
||x||p, 2||x||p]) ≥

3

4

Proof. Let q = min{ u1
|x1|p

, ...,
up
|xn|p

}. Given u1, u2, ...un are i.i.d random variables drawn from the

exponential distribution e−t,

P (q > t) = P (∀i, ui > t|xi|p)

=

n∏
i=1

e−t|xi|
p

= e−t|xi|
p
p

Therefore,

P (
1

2
‖x‖p ≤ ‖y‖∞ < 2‖x‖p) = P (

1

2p
∑

i |xi|p
≤ q ≤ 2p∑

i |xi|p
)

= e
− 1

2p − e−2p

≥ 3

4

for p > 2.

In next lecture, we will show that the second step preserves ‖y‖∞ with good probability.

References

[1] Nisan, Noam. ”Pseudorandom generators for space-bounded computation.” Combinatorica
12.4 (1992): 449-461.

[2] Andoni, Alexandr. ”High frequency moment via max stability.” Unpublished manuscript
(2012).

4

