
CS369G: Algorithmic Techniques for Big Data Spring 2015-2016

Lecture 6: Max-Stability and Misra-Gries

Prof. Moses Charikar Scribes: Akshay Agrawal, Yifan Lu

1 Overview

In this lecture, we bring our discussion of frequency moment estimation to a close by completing
our analysis of Andoni’s max-stability algorithm [1] for moments with p > 2. We will end the
lecture by introducing a new topic, that of frequent item estimation, and presenting the classic
Misra-Gries streaming algorithm [2] for the heavy hitters problem.

2 Analysis: p > 2 Frequency Moments via Max-Stability

Last time, we looked at a linear sketch scheme to estimate the `p norm of a vector for p > 2 that

took Õ(n
1− 2

p) space. Recall that the algorithm, due to Andoni [1], consists of a two-step mapping.
The input x ∈ Rn is first transformed to a vector y ∈ Rn by scaling each entry xi of x by a value

u
−1/p
i , where ui ∼ Exp(1). That is, yi = xiu

−1/p
i . We then reduce y to an m-dimensional vector

z such that zj =
∑

i:h(i)=j

σ(i) · yi, where h : [n] → [m] and σ : [n] → {±1} are hash functions. Our

final estimate of ‖x‖p is ‖z‖∞.

For notational convenience, let M = ‖x‖p. We proved in the prequel that ‖y‖∞ ∈ [1/2M, 2M] w.p.
≥ 0.75. To complete the analysis of the max-stability estimator, we now bound the probability that
the infinity norm of z deviates from that of y. We do this in two steps, explained informally here
and expounded upon in the following two subsections. In the first step, we show that the number
of the yi that are large is sufficiently small such that, with high probability, these large yi do not
collide when they are mapped to z. In the second step, we demonstrate that the net contributions
of the remaining small coordinates of y are themselves small.

2.1 Bounding the probability of large element collisions in z

We formalize the notion of large yi with the following definition and prove a bound on the number
of such coordinates.

Definition 1. yi is large if |yi| >
M

c log n
.

Claim 1. For ` ≥ 1, there are at most `p indices i s.t. |yi| >
M

`
(in expectation).

1

Proof.

Pr

[
yi >

M

l

]
= Pr

[
xiu
−1/p
i >

M

`

]
= Pr

[
ui <

xpi `
p

Mp

]
= 1− e−x

p
i `

p/Mp

≤
xpi `

p

Mp

where the last equality uses the fact that ex ≥ 1 + x for all x.

Thus, if Y is number of large coordinates (and recalling that M is defined as ‖x‖p),

E[Y] =
∑
i

Pr[yi >
M

`
] ≤ `p

∑
i

xpi
Mp

= `p

In our definition of large coordinates, taking ` = c log n; the above claim tells us that we have
O(logp n) large coordinates. By the birthday paradox, we expect to encounter collisions when the

number of elements is on the order of
√
m. Since logp n � O(n

1− 2
p log n) = m for p > 2, the

probability that any two large coordinates in y collide when mapped to z is small, as was desired.

Exercise: Prove the last assertion.

2.2 Bounding the net contributions of small elements

Let s =

{
i

∣∣∣∣yi < M

c log n

}
be the set of small elements and Z ′j =

∑
i∈s:h(i)=j

σ(i) · yi the net total they

contribute to the j-th entry of z. We carry out some computations to find the variance of Z ′j and
bound it with standard inequalities to show that it is (substantially) smaller than ‖x‖p. Clearly,
E[Z ′j] = 0. So

Var[Z ′j] = E[(Z ′j)
2] = E

 ∑
i∈s:h(i)=j

σ(i) · yi

2
= E

 ∑
i∈s:h(i)=j

y2i

 (the cross terms equal zero)

=

∑
i∈s y

2
i

m

≤ ‖y‖
2
2

m

In order to interpret our variance in a meaningful way, we want to relate ‖y‖2 to M = ‖x‖p.

2

Claim 2. ‖y‖22 ≤ n
1− 2

p ‖x‖2p

Proof. Consider p = 2. E[y2i] = x2iE[u
−2/p
i] = O(x2i), since the expectation of an exponential

random variable is constant. It follows that E[‖y‖22] = O(‖x‖22).

We now invoke Hölder’s inequality, which states that, given f, g ∈ Rn,
∑
i

figi ≤ ‖f‖a‖g‖b, where

1/a+ 1/b = 1, fi = x2i , and gi = 1. Choosing a = p/2 and b = 1/(1− 2/p) so that
∑
i

figi = ‖x‖22,

Hölder’s tells us that ‖x‖22 ≤ n1−2/p‖x‖2p.

The above claim implies that Var[Z ′j] ≤
n
1− 2

p ·M2

m
. To bound the probability that the sum of

the Z ′j ’s is small, we will need an inequality stronger than Chebyshev; in particular, we will use
Bernstein’s inequality, which derives from the machinery of Chernoff bounds.

Theorem 1 (Bernstein). Given x1, . . . , xn (independent) with E[xi] = 0 and |xi| ≤ Q,

Pr

[∑
xi

> t

]
≤ exp

(
−t2/2∑

i E[x2i] + 1
3Qt

)
.

We can apply Bernstein to bound the probability that |Z ′j | exceeds M :

Pr[|Z ′j | > αM] ≤ exp

 (αM)2

n
1− 2

pM2

m + 1
3

M
c logn(αM)


≤ exp(−c′ log n)

To bound the probability that the sum of the Z ′j ’s exceed M , we can simply apply the union bound
over all indices j. (Note that we can control c′ as desired.)

2.3 Discussion

• Our proof gives us a constant approximation. Can we get a (1 + ε)-approximation? We can
do it by making m suitably large and using multiple copies of the process and taking the
median.

• We need n exponential random variables. How do we do sample from them in a streaming
fashion? Nisan’s construction [3] works, but other methods work as well (tabulation based
hashing, for example).

• The sketch itself is linear, even though the final estimator is not.

3

3 Frequent Items/Heavy Hitters

We’ll now discuss the problem of identifying elements that occur frequently in a data stream. Let’s
start with a simple instantiation of this problem: if we know that there is one item that occurs at
least half the time, how do we find it with one pass?

Here’s a possible construction: We keep one element and one counter, initialized to zero. For each
element, if the counter is zero we replace the stored element with the current one and we set the
counter to one. If we see the element again, we increment the counter. Otherwise, we decrement
the counter.

Why does this work? For the sake of analysis, we reformulate the algorithm such that instead of
storing an element and a counter, we have a stack. An increment of the counter corresponds to
pushing the current element onto the stack. A decrement corresponds to popping from the stack.
It is simple to show that this formulation is functionally equivalent.

Every time you pop off the stack, there are two elements of interest: the one you popped and the
one you used to cause the pop. The pop cannot happen more than m/2 times. This means the
element that occurs more than half the time cannot be popped and matched that many times, so
it must be at the top of the stack in the end.

The Misra-Gries algorithm [2] generalizes this to the heavy hitters problem, in which we must report

elements i such that fi ≥
m

k
in a stream of m elements: We have k bins each with an element and

a counter. When we see a new element, j, if j belongs to some bin, we increase the counter for
that bin. Otherwise, we add (j, 1) to list of bins. Finally, if there exist k bins already, decrease all
counters by 1 and remove any bin with counter 0. If f̂i is the frequency reported by the algorithm

of i. f̂i = 0 for all i not in memory and fi −
m

k
≤ f̂i ≤ fi. If m = ‖f‖1 then the error is

‖f‖1
k

with

k =
1

ε
.

While Misra-Gries is, of course, a streaming algorithm, it does not produce a sketch and its output
is therefore not composable. In the next lecture, we will look at a data structure that can produce
a sketch for heavy hitters.

References

[1] A. Andoni, High frequency moments via max-stability, 2013.

[2] J. Misra & D. Gries, Finding repeated elements, Cornell University Technical Report, 1982.

[3] N. Nisan, Pseudorandom generators for space-bounded computation” Combinatorica, 12.4
(1992): 449-461.

4

