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1 Overview

This lecture introduces the count-min sketch, a data structure that solves the heavy hitters problem:

Given a data stream of length m and a parameter k, find all elements that occur at least m/k times.

2 A non-sketch solution to heavy hitters

The following algorithm is due to Misra and Gries ’82 [1].

Algorithm 1

initialize k bins, each with an element (initially null) and a counter (initially 0)
for each element e in the stream do

if e is in a bin b then
increment b’s counter

elseif find a bin whose counter is 0
set its element it e and its counter to 1

else decrement the counter of every bin.

for each bin b do
i← the element in bin b
return f̃i = b’s counter

For all i, let fi be the true frequency of element i. For each heavy hitter i, the above algorithm
returns f̃i such that fi −m/k ≤ f̃i ≤ fi. The proof of correctness is straightforward and will not
be included here.

The above algorithm solves the heavy hitters problem efficiently and with little space, but it isn’t
a sketch so it cannot be used to easily combine information from multiple data streams. At the
expense of some space, we can devise a sketch that solves the heavy hitters problem, the count-min
sketch.

3 The count-min sketch

The count-min sketch is a solution to the heavy hitters problem developed by Cormode and
Muthukrishnan ’05 [2]. The idea of the count-min sketch is to use a collection of independent hash
functions to hash each element in the stream, keeping track of the number of times each bucket is
hashed to. The hope is that for each heavy hitter, one of the buckets it hashes to witnesses few
hashes from other elements. The details are as follows.
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3.1 The Count-Min Algorithm

Initialization:
- Initialize d independent hash functions hj : [n] → [w] with w buckets each for j ∈ [d]. For each
bucket b of each hash function j, store a counter Cj(b) initially set to 0.
Building the data structure:
- For each element i of the stream, hash i using each hash function and increment C(hj(i)) ∀j ∈ [d].
Querying the data structure:
- Given an element i, return f̂i = min

j∈[d]
C(hj(i)).

3.2 Analysis

Let m be the length of the stream. Fix an element i and a hash function hj . Assume that hj(i) = b.
Let’s compute the expectation of the value of the bucket b that i hashes to using the j-th hash
function:

E[C(hj(i))] = E

 ∑
s:hj(s)=b

fs

 = fi +
1

w

∑
s 6=j

fj ≤ fi +
m

w

since the sum of all frequencies is justm, the number of elements in the stream, and each element has
probability 1/w of mapping to a particular bucket. Since the count-min sketch only overestimates
frequencies (i.e. C(hj(i)) − fi ≥ 0), we may apply Markov’s inequality in conjunction with the
above inequality to get:

P
(
C(hj(i)) ≥ fi +

2m

w

)
= P

(
C(hj(i))− fi ≥

2m

w

)
≤ (E[C(hj(i))]− fi)

2m
w

≤ 1

2

Since, we select each hash function j ∈ [d] independently, we have that:

P
(
f̂i ≥ fi +

2m

w

)
=
∏
j∈[d]

P
(
C(hj(i)) ≥ fi +

2m

w

)
≤
(

1

2

)d

Choosing w =
2

ε
and d = log2

1

δ
yields P

(
f̂i ≥ fi + εm

)
≤ δ. The space usage is dw =

2

ε
log2

1

δ
counters, plus the space used to store the d hash functions hj : [n]→ [m]. The processing time and

query time for a single element are each d = log2
1

δ
.

4 An extension to the count-min sketch

The count-min sketch does not efficiently support two types of queries that may be useful:

1. range queries i.e. “how many elements in the stream have value between a and b?” (to get
this information each element in the range would need to be queried individually)

2. listing all of the heavy hitters (to get this information each element would need to be queried
individually)
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The following extension to the count-min sketch supports these two types of queries at the expense
of some space.

Let n be the number of unique elements. If the elements have a meaningful order, for all i from 1
to n let element i be the ith smallest element. Otherwise, arbitrarily define a bijection between the
set of unique elements and the integers 1 through n (in this case range queries are uninformative).

Instead of storing an estimate of the frequency of each individual element, we store an estimate of
the total frequency of the elements in certain intervals. The intervals we’ll use, shown in figure 1,
are known as the dyadic intervals of [1, . . . , n]. Formally, the dyadic intervals of [1, . . . , n] are the

set of intervals of the form [j
n

2i
+1, . . . , (j+1)

n

2i
] for all i from 0 to log2 n and all j from 0 to 2i−1.

For each row of intervals in figure 1, we store a separate count-min sketch data structure. For all
rows i, the ith count-min sketch treats two elements that fall into the same interval in row i as the
same element.

For all intervals i, let C(i) denote the value that the appropriate count-min sketch returns given i
as input.

[1, . . . , n]

[1, . . . ,
n

2
][
n

2
+ 1, . . . , n]

...
...

[1, 2, 3, 4 ][ 5, 6, 7, 8] . . . [n− 3, n− 2, n− 1, n]

[1, 2] [3, 4 ][ 5, 6] [7, 8] . . . [n− 1, n]

[1][2][3][4][5][6][7][8] . . . [n]

Figure 1. the dyadic intervals of [1, . . . , n]

4.1 Range queries

The following fact will be useful:

Fact: any range in the interval from 1 to n is expressible as the disjoint union of 2 log n intervals
in the set of dyadic intervals.

Queries: to perform a range query, simply express the range as a disjoint union I of intervals as

in the above fact and return
∑
i∈I

Ci.

Analysis: Let m be the length of the stream. Since, we express our estimate as a sum over 2 log n
elements, to achieve an additive error of at most εm as in the original count-min sketch, we allow

each interval in I to contribute an additive error of
εm

2 log n
. Now, the number of hash buckets in

each count-min sketch must be
4 log n

ε
and there are log2 n separate count-min sketches, so the

total space needed is O(
1

ε
log

1

δ
log2 n). Each range query requires 2 log n count-min sketch queries

for a total query time of O(ε−1 log
1

δ
log n).
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4.2 Listing heavy hitters

Let the frequency of i denote the sum of the frequencies over all elements in interval i.

It will be useful to view the set of dyadic intervals as a binary tree where the interval in the top
row in figure 1 is the root, its children are the two intervals in the 2nd row, their children are the
four intervals in the 3rd row, etc. The idea is to explore the tree starting at the root, only exploring
the children of intervals of high frequency. Specifically, since the frequency of an interval is at least
that of each of its children and the count-min sketch only overestimates frequencies, we need only
explore the children of intervals whose frequency, as reported by the count-min sketch, is at least
m/k. Starting from the root, we explore the tree in this manner and then return the leaves whose
frequency, as reported by the count-min-sketch, is at least m/k.

Analysis: Since log2 n count-min sketches are needed, the space requirement is O(
1

ε
log

1

δ
log n).

(Unlike for range queries, each frequency reported is the result of a single count-min sketch query
so another log n factor is not required.)

Notice that for any given row, the sum over all frequencies in that row is m, the length of the
stream. Thus, in any row, there are at most k intervals with frequency m/k. Therefore, we only
explore the children of at most k intervals in any given row, so the total number of intervals queried
(and the total time required) is O(k log n).

In the next lecture, we’ll introduce the count sketch data structure, which came chronologically
before the count-min sketch, but has better performance for certain classes of input.
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