
CS369G: Algorithmic Techniques for Big Data Spring 2015-2016

Lecture 8: CR-PRECIS and Count Sketch

Prof. Moses Charikar Scribe: Carson Kent

1 Overview

Previously, we introduced the Count-Min sketch for computing frequencies of elements in a stream.
In this lecture, we will first discuss a derandomized variant on Count-Min and then introduce a
related sketch: Count-Sketch. Analysis will show that Count-Sketch produces estimates which are
less sensitive to heavy tailed distributions and we will conclude by making connections between
Count-Sketch and Count-Min.

2 Derandomizing Count-Min

Recall that, for a given element i, we are interested in estimating it’s frequency fi up to an additive
error of εK. Abstractly, K is a particular global statistic of the stream and accounts for the fact
that the error in estimation ought to be relative to the size and/or the distribution of the elements
in the stream. For Count-Min [1], K = F1 and we have the one-sided bound

fi ≤ f̃i ≤ fi + εF1 ∀i ∈ [n]

with high probability. The cost of accomplishing this an attractive O((log n)/ε) space where the
log n factor accounts for the fact that the bound must hold jointly for all i.

It is natural to wonder if, at the expense of slightly greater storage, a more absolute bound can be
obtained by derandomizing the Count-Min sketch. Indeed, this is exactly the task accomplished
by the CR-PRECIS sketch.

2.1 The CR-PRECIS sketch

The algorithm for constructing the CR-PRECIS [2] sketch only differs from Count-Min sketch by
making a deterministic choice of hash functions instead of a stochastic one. Thus, the description
of the algorithm is exactly the same up to the selection of hash functions and will therefore be
omitted. Instead, we will focus on analysis of the method for choosing the hash functions and how
this affects the space guarantees of the algorithm.

2.1.1 Analysis

Consider selecting the hash functions induced by the first t primes q1, . . . , qt. That is, let

hj(i) = i mod qj

1

for an element i ∈ [n] of the stream. To show that this selection of hash functions provides a
similar space guarantee as the random hash functions used in Count-Min we need to establish two
conditions:

1. Collisions between the hashes of elements are infrequent enough that t does not have chosen
to be too large.

2. The magnitude of the qj is sufficiently small such that the range of the hj does not require
too much storage.

For the first condition, consider the following fact

Fact 1. (Chinese Remainder) If n1, . . . , nk are coprime and a1, . . . , a2 are any integers, then the
set of equations

x ≡ a1 mod n1

x ≡ a2 mod n2
...

x ≡ ak mod nk

has a solution x, which is unique modulo N = n1n2 · · ·nk

This implies that, for i 6= j ∈ [n], if hj1(x), . . . , hjm(x) hash i and j to the same bucket then

i ≡ j mod qj1 · · · qjm

The statement cannot be true if qj1 · · · qjm ≥ n. Thus, the trivial bound qj ≥ 2 shows that a
collision between two elements i and j can occur at most log2 n times.

The immediate consequence of this bound is that

t∑
j=1

C(hj(i)) ≤ tfi + log(n)F1

where C(hj(i)) is the count of the jth bin that i is hashed to. Thus,

f̃i = min
j

(C(hj(i))) ≤ fi +
log(n)F1

t

Moreover, setting

t =
log n

ε

we see that we can obtain an εF1 approximation.

For this choice of t, we must now bound how large qt can be– as O(qt) buckets must be stored for
each hash. It is a celebrated result in number theory that

Fact 2. (Prime Number Theorem) The number of prime numbers less than n is Θ(n/ log n).

2

This immediately gives the bound qt = O(t log t). Multiplying this by the number of hashes, it
quickly follows that the total space used by CR-PRECIS is

O

(
log2 n log log n

ε2

)

Hence, at the expense of some polylog factors and an extra factor of ε CR-PRECIS avoids random
variate generation altogether and provides an absolute guarantee on the error of the estimated
frequencies.

Note, it is an open problem whether o(1/ε2) is a lower bound for a deterministic algorithm.

3 The Count-Sketch Algorithm

For streams where the elements are drawn from a heavy-tailed distribution, the frequency of “heavy
hitters” can be less well distiguished from frequencies of the other elements in the stream. Indeed,
an example is the Zipfian distribution with p = 1/2 (shown below) where the frequency of the ith
element is proportional to 1/

√
i.

(
i,
c√
i

)

fi

For Count-Min and CR-PRECIS, such a distribution forces one to choose ε to be very small in
order to make εF1 meaningful.

To help lessen this sensitivity, notice that, for a sequence of elements drawn from the Zipf distri-
bution,

F2 = O

(
F 2
1 log n

n

)
This suggests that a sketch which provides an error bound relative a suitable function of a higher
frequency moment might be less sensitive to heavy-tailed streams. Indeed, the trivial bound that√
F2 ≤ F1, implies that achieving ε

√
F2 error yields a sketch which is always less sentitive to

heavy-tailed streams than Count-Min or CR-PRECIS.

3

3.1 Algorithm and Analysis

To construct the Count-Sketch [3], first notice that the error of the Count-Min sketch is funda-
mentally affected by the degree to which hash collisions occur between higher frequency elements.
Thus, to reduce the effect of these collisions, consider maintaining a signed sum of the frequencies
of the elements which hash to each bucket.

If the sign of each element in this sum is chosen uniformly from {±1}, the intuition is that collisions
with between high frequency elements will tend to cancel on average– reducing their overall effect
on the frequency estimates.

Formally, consider the following:

1. For constants w and d (to be defined later) independently choose 2d random hash functions
h1, . . . , hd and s1, . . . , sd such that hi : [n]→ [w] and si : [n]→ {±1}. It is necessary that the
hash families from which hi and si are chosen be pairwise independent.

2. For each item qi in the stream, add sj(qi) to the hj(qi)th bucket of the jth hash.

At the end of this process, one has wd sums (Cij) where

Cij =
∑

hi(k)=j

si(k)fk

A convenient way to visualize these elements is in a table with d rows and w columns:

C11 C12 C13
w· · ·C21 C22 C23

...
d

Now, it is not hard to see that E(Cij) = 0 for all i, j– prohibiting use of the estimator employed
by Count-Min. Thus, to recover the frequency of the ith element from Chj(i)j , notice that (by the
2-independence of sj)

E
(
sj(i)Chj(i)j

)
= fi

Further,

Var
(
sj(i)Chj(i)j

)
≤ E

(
C2
hj(i)j

)
≤ F2

w

by the 2-independence of hj .

Hence, f̂ij = sj(i)Chj(i)j is an unbiased estimator for fi and, by choosing w = 3/ε2, Chebyshev
promises that

P(|f̂ij − fi| > ε
√
F2) ≤

1

3

Setting d = O(log n) we can use the standard median trick

f̃i = medianj

(
f̂ij

)
4

so that
|f̃i − fi| ≤ ε

√
F2

holds with high probability.

Thus, Count-Sketch requires total space of order

wd = O

(
1

ε2
log n

)

4 Concluding Notes

The table below contrasts Count-Min and Count-Sketch

Space Error

Count-Min O

(
1

ε
log n

)
εF1 (one-sided)

Count-Sketch O

(
1

ε2
log n

)
ε
√
F2 (two-sided)

Ignoring the distinction between one-sided and two-sided error, it is easy to see that Count-Sketch
provides an error guarantee which is generally stronger that Count-Min, but at the expense of
slightly greater space.

It is also worth noting that the degree to which a hash from a random family tends not to introduce
collisions between important (i.e. highly frequent) elements has been exploited well beyond the field
of streaming algorithms. Indeed, in machine learning, a very important method of dimensionality
reduction called the “hashing trick” relies upon this fact to produce reduced datasets of features
that are nearly identical to the sketches constructed by Count-Min.

In the next lecture, we will introduce the problem of sparse recovery and demonstrate an application
of Count-Sketch to solving it.

References

[1] G. Cormode, S. Muthukrishnan, An improved data stream summary: the count-min sketch
and its applications, Journal of Algorithms, 55(1), pp.58–75, 2005.

[2] S. Ganguly, A. Majumder, CR-PRECIS: a deterministic summary structure for update data
streams, ESCAPE’07, pp.48–59, 2007.

[3] M. Charikar, K. Chen, M. Farach-Colton, Finding frequent items in data streams, Theoretical
Computer Science, 312(1), pp.3–13, 2004.

5

