
CS 368 (Stanford, Spring 2022) Lecture 1
Adapted from CS 369G, Spring 2016. Scribes: Tommy Li, Alfred Xue, Paris Syminelakis.

Counting Distinct Elements

1 Overview

This lecture introduces the Data Stream Model and shows how hash functions and a popular
technique called median-of-means may be used to develop a good estimator for the number
of distinct elements in a large data set.

2 The Data Stream Model

Imagine you are working with Google’s log analysis team. You want to make a query about
a data set that is

• so big that it doesn’t fit on a single computer, and

• so big that a polynomial running time isn’t good enough.

What can you do? To satisfy these constraints, we think about algorithms that follow the
Data Stream Model [Mor78]. A computer implementing such an algorithm can only access
data in a single pass, and only one piece at a time. Therefore at any given moment it only
has access to its own memory and a single piece of the input data.

Here’s an example question: Find a counter that uses less than log n space. This clearly
can’t be done perfectly, so cutting corners in some way must be necessary. We could cut
corners by allowing approximation in the sense that we require that, given the true number
k of elements, our counter returns a value between k(1 − ϵ) and k(1 + ϵ). We could also
cut corners by allowing some small possibility of failure, by only requiring that our algorithm
succeeds with probability 1− δ, where δ is some small number (e.g δ < 10−6). In this case,
O(log log n) bits suffice [FM85; AMS99].

1

3 Counting Unique Entries

Let’s return to the story of being in the Google log-analysis team. Say you want to count
the number of distinct queries in a list of queries. Now what do you do? One naive approach
would be to use a hash table to store all each query as you receive it. However, this would
require a very large hash table! The memory required would be at least linear in the number
of distinct entries, which would already be too much. Another approach might be to attempt
to use some subset of the queries as a representative of the entire data set, e.g. by counting
the number km of distinct elements in some random selection of m elements of the n entries
and estimating the actual number k of distinct elements as

n

m
km. It turns out this type of

approach fails as well, roughly because you can’t reliably gain information about things that
appear extremely infrequently reliably. For example, one cannot reliably distinguish between
000 000︸ ︷︷ ︸

n times

and 000 000︸ ︷︷ ︸
n−m times

123...m using a random selection of m elements. So a

different approach is needed.

4 The Estimator

One idea that does work is to use a hash function h : U → [0, 1]. What we do is to hash
each entry xi of the data as we see it, and keep track of the minimum seen hash value in our
memory.

Claim: If there are k distinct elements x1, x2, ..., xk then E
[
min
i=1,...,k

h(xi)

]
=

1

k + 1
.

Proof. Let Y = min(h(x1), . . . , h(xk)). We will assume for now that the values h(x1), . . . , h(xk)
are independently distributed uniform random variables over the interval [0, 1]. It follows that
P r [h(xi) ≤ t] = t and by independence P r [Y > t] = (1 − t)k . Taking the complement of
the event we get P r [Y ≤ t] = 1 − (1 − k)k . We differentiate this cumulative distribution
function with respect to t to get P r [Y ∈ [t, t + dt]] = k(1− k)k−1dt. We can now use this
to compute the expectation of Y , getting:

E[Y] =

∫ 1

0

tk(1− t)k−1dt

= k

∫ 1

0

(1− (1− t))(1− t)k−1dt

= k

(∫ 1

0

(1− t)k−1dt −
∫ 1

0

(1− t)kdt
)

= k

(
1

k
−
1

k + 1

)
=

1

k + 1

This is useful because it means that Y may be used as a tool to estimate k .

2

5 Median of Means

While we have an algorithm that has an expected value of k , we have done no analysis on
the probability the algorithm returns a value close to k . One naive approach is to simply take
the mean of multiple instantiations of this algorithm. To do this, we can build multiple hash
functions, and keep track of the minimum of all of the hash functions, and then take the
average of the minimums of these hash functions.

Let Z be the average of the minimums of these hash functions. That is, Z =
y1 + y2 + . . . yt

t
.

We can say that E[Z] = E[Yi], V ar [Z] =
V ar [Y]

t
. To compute the variance of Y , we note

that V ar [Y] = E[Y 2]− (E[Y])2. To increase accuracy, we can build multiple hash functions,
and keep track of the minimum of all of the hash functions, and then take the average of
them. To compute the variance of Y , we note that

E[Y 2] =

∫ 1

0

t2k(1− k)k−1dt

= k [
1

k
−
2

k + 1
+
1

k + 2
]

Thus

V ar [Y] = E[Y 2]− (E[Y])2

V ar [Z] = E[Z2]− (E[Z])2 =
2

(k + 1)(k + 2)
−
1

k + 1

2

≤
1

(k + 1)2

.V ar [Y] ≤ (E[Y])2

V ar [Z] ≤
(E[Z])2

t

Now we can bound the probability we are within δ of k .

Pr (|Z − E[Z]| ≥ ϵ · E[Z]) ≤
V ar(Z)

(ϵ · E[Z])2 ≤
1

ϵ2t

This isn’t sufficiently small in relation to t, so we use a different technique to get high
probabilities, by applying Chernoff bounds in a specific way. The method we are going to use
is called median of means.

1. Lets say we have several groups of hash functions zi , each group has
4

ϵ2
estimators,

and has probability 1/4 to report a value outside its estimated range.

2. We now return median(z1, z2, . . . , zs).

3

There are two ways the median can be bad, it can be too low, or it can be too high. In either
case, at least half of these elements are bad. We can use indicator variables for each zi , that
return 1 if it is bad, and 0 otherwise. The expected sum of these indicator variables is

s

4
.

The probability that this value is more than
s

2
can be expressed as follows.

Pr[at least half of z1, z2, . . . zi are bad] ≤ e−(2 ln 2−2+1)·s/4 ≤ e−s/11

which when set to be equal to δ allows us to solve s = 11 ln
1

δ
.

References
[AMS99] Noga Alon, Yossi Matias, and Mario Szegedy. “The space complexity of approx-

imating the frequency moments”. In: Journal of Computer and system sciences
58.1 (1999), pp. 137–147.

[FM85] Philippe Flajolet and G Nigel Martin. “Probabilistic counting algorithms for data
base applications”. In: Journal of computer and system sciences 31.2 (1985),
pp. 182–209.

[Mor78] Robert Morris. “Counting large numbers of events in small registers”. In: Commu-
nications of the ACM 21.10 (1978), pp. 840–842.

4

	Overview
	The Data Stream Model
	Counting Unique Entries
	The Estimator
	Median of Means

