
CS 368 (Stanford, Spring 2022) Lecture 2
Adapted from CS 369G, Spring 2016. Scribes: Stephen Mussmann, Paris Syminelakis.

Streaming Algorithms

1 Overview

In this lecture, we derive a concentration inequality for an algorithm for counting distinct
element in a stream using pairwise independent hash functions.

2 Review

Last lecture we examined the problem of estimating the number of distinct elements in a
stream. We found a solution that performed better than the brute force approach of keep
an enormous hash table. The solution that was presented was a probabilistic algorithm that
gave an (1 + ϵ) approximation with probability 1− δ. Further, the algorithm required space

O(
1

ϵ2
log(
1

δ
)).

More precisely, we defined Y as the minimum hash value of the stream. For a fully independent
hash, we found that

E[Y] =
1

k + 1
(1)

where k is the number of distinct elements. Recall that we combined many copies of Y using

independent hashes to provide an estimate. In particular, we created O(log(
1

δ
)) groups of

hashes where each group had O(
1

ϵ2
) hashes. For the estimate, we computed the mean of

each group, then calculated the median of these means.

3 Sketches

Informally, a data sketch is a smaller description of a stream of data that enables the calcula-
tion or estimate of a property of the data. An important attribute of sketches is that they are
composable. Suppose we have data streams S1 and S2 with corresponding sketches sk(S1)
and sk(S2). We wish there to be an efficiently computable function f where

sk(S1 ∪ S2) = f (sk(S1), sk(S2)) (2)

1

4 Bounds for Pairwise Independent Hashes

In the analysis of the distinct element sketch from last time, we relied on a fully independent
family of hash functions. Unfortunately, such hash functions are not practical. Here, we
examine pairwise independent hashes. Recall that a pairwise independent family of hash
functions satisfies

Ph[h(x1) = y1, h(x2) = y2] = Ph[h(x1) = y1]Ph[h(x2) = y2] (3)

4.1 Example

Choose p to be a large prime number. Let a, b ∈ [p]. Let us define the following hash
function ha,b : [p]→ [p] as

ha,b(x) = ax + b(mod p) (4)

This family of hash functions is pairwise independent.

In particular, for this family of hash functions, we have the following bounds

P[Y <
1

3k
] <
2

5
(5)

P[Y >
3

k
] <
1

3
(6)

We can then make O(log(
1

δ
)) copies of the hash and take the median to be an estimate that

is within a factor of 3 of the true answer with probability 1− δ.

The first bound has an easy proof in the continuous case since we can do a union bound on

the interval [0,
1

3k
] among k elements to get a probabilistic bound of

1

3
.

4.2 General Pairwise Independent Analysis

To get a general bound for pairwise independent hash families, we need to change the algo-
rithm. Instead of taking the mean of the min within a group of hashes, we keep track of the
smallest t hash elements. Let yi be the i th smallest element. For this setup, our estimator is
t/yt .

Theorem 1. Fix t = c/ϵ2. With probability 2/3,

(1− ϵ)t
k

≤ yt ≤
(1 + ϵ)t

k

2

Proof. Let us first prove the second inequality first.

Let I = [0, (1+ ϵ)
t

k
]. Let Xi be an indicator variable for the event h(xi) ∈ I. Let X =

∑
i

Xi .

Thus, X is the number of hash values in the interval I.

Note that E[X] =
∑
i

E[Xi] = k(1 + ϵ)
t

k
= (1 + ϵ)t.

P[yt >
(1 + ϵ)t

k
] = P[X < t] = P[X − E[X] < −ϵt] ≤ P[|X − E[X]| > ϵt] (7)

By Chebyshev’s inequality,

P[|X − E[X]| > ϵt] ≤
V ar [X]

ϵ2t2
(8)

Let p be the probability that Xi = 1. Then, E[Xi] = p and V ar(Xi) = p(1−p). By linearity of
expectation, E[X] = kp and by pairwise independence, V ar(X) = kp(1−p) ≤ E[X] = (1+ϵ)t.
Thus,

P[|X − E[X]| > ϵt] ≤
(1 + ϵ)t

ϵ2t2
=
(1 + ϵ)

c
(9)

We can choose the value of c so that
(1 + ϵ)

c
≤
1

6
. Putting this together, we get,

P[yt <
(1 + ϵ)t

k
] ≤
1

6
(10)

the proof of the other direction is the same except that the Chebyshev bound is in the other
direction.

For this scheme, we need O(log(
1

δ
)) different hashes and for each hash we need to store

t = O(
1

ϵ2
) values. Thus, the memory of the algorithm will be O(

1

ϵ2
log(
1

δ
).

3

	Overview
	Review
	Sketches
	Bounds for Pairwise Independent Hashes
	Example
	General Pairwise Independent Analysis

