Adapted from CS 369G, Spring 2016. Scribes: Stephen Mussmann, Paris Syminelakis.

Streaming Algorithms

1 Overview

In this lecture, we derive a concentration inequality for an algorithm for counting distinct element in a stream using pairwise independent hash functions.

2 Review

Last lecture we examined the problem of estimating the number of distinct elements in a stream. We found a solution that performed better than the brute force approach of keep an enormous hash table. The solution that was presented was a probabilistic algorithm that gave an $(1+\epsilon)$ approximation with probability $1-\delta$. Further, the algorithm required space $O\left(\frac{1}{\epsilon^{2}} \log \left(\frac{1}{\delta}\right)\right)$.

More precisely, we defined Y as the minimum hash value of the stream. For a fully independent hash, we found that

$$
\begin{equation*}
\mathbb{E}[Y]=\frac{1}{k+1} \tag{1}
\end{equation*}
$$

where k is the number of distinct elements. Recall that we combined many copies of Y using independent hashes to provide an estimate. In particular, we created $O\left(\log \left(\frac{1}{\delta}\right)\right)$ groups of hashes where each group had $O\left(\frac{1}{\epsilon^{2}}\right)$ hashes. For the estimate, we computed the mean of each group, then calculated the median of these means.

3 Sketches

Informally, a data sketch is a smaller description of a stream of data that enables the calculation or estimate of a property of the data. An important attribute of sketches is that they are composable. Suppose we have data streams S_{1} and S_{2} with corresponding sketches $s k\left(S_{1}\right)$ and $s k\left(S_{2}\right)$. We wish there to be an efficiently computable function f where

$$
\begin{equation*}
\operatorname{sk}\left(S_{1} \cup S_{2}\right)=f\left(\operatorname{sk}\left(S_{1}\right), \operatorname{sk}\left(S_{2}\right)\right) \tag{2}
\end{equation*}
$$

4 Bounds for Pairwise Independent Hashes

In the analysis of the distinct element sketch from last time, we relied on a fully independent family of hash functions. Unfortunately, such hash functions are not practical. Here, we examine pairwise independent hashes. Recall that a pairwise independent family of hash functions satisfies

$$
\begin{equation*}
\mathbb{P}_{h}\left[h\left(x_{1}\right)=y_{1}, h\left(x_{2}\right)=y_{2}\right]=\mathbb{P}_{h}\left[h\left(x_{1}\right)=y_{1}\right] \mathbb{P}_{h}\left[h\left(x_{2}\right)=y_{2}\right] \tag{3}
\end{equation*}
$$

4.1 Example

Choose p to be a large prime number. Let $a, b \in[p]$. Let us define the following hash function $h_{a, b}:[p] \rightarrow[p]$ as

$$
\begin{equation*}
h_{a, b}(x)=a x+b(\bmod p) \tag{4}
\end{equation*}
$$

This family of hash functions is pairwise independent.
In particular, for this family of hash functions, we have the following bounds

$$
\begin{gather*}
\mathbb{P}\left[Y<\frac{1}{3 k}\right]<\frac{2}{5} \tag{5}\\
\mathbb{P}\left[Y>\frac{3}{k}\right]<\frac{1}{3} \tag{6}
\end{gather*}
$$

We can then make $O\left(\log \left(\frac{1}{\delta}\right)\right)$ copies of the hash and take the median to be an estimate that is within a factor of 3 of the true answer with probability $1-\delta$.

The first bound has an easy proof in the continuous case since we can do a union bound on the interval $\left[0, \frac{1}{3 k}\right]$ among k elements to get a probabilistic bound of $\frac{1}{3}$.

4.2 General Pairwise Independent Analysis

To get a general bound for pairwise independent hash families, we need to change the algorithm. Instead of taking the mean of the min within a group of hashes, we keep track of the smallest t hash elements. Let y_{i} be the $i^{t h}$ smallest element. For this setup, our estimator is t / y_{t}.

Theorem 1. Fix $t=c / \epsilon^{2}$. With probability $2 / 3$,

$$
\frac{(1-\epsilon) t}{k} \leq y_{t} \leq \frac{(1+\epsilon) t}{k}
$$

Proof. Let us first prove the second inequality first.
Let $I=\left[0,(1+\epsilon) \frac{t}{k}\right]$. Let X_{i} be an indicator variable for the event $h\left(x_{i}\right) \in I$. Let $X=\sum_{i} X_{i}$.
Thus, X is the number of hash values in the interval l.
Note that $\mathbb{E}[X]=\sum_{i} \mathbb{E}\left[X_{i}\right]=k(1+\epsilon) \frac{t}{k}=(1+\epsilon) t$.

$$
\begin{equation*}
\mathbb{P}\left[y_{t}>\frac{(1+\epsilon) t}{k}\right]=\mathbb{P}[X<t]=\mathbb{P}[X-\mathbb{E}[X]<-\epsilon t] \leq \mathbb{P}[|X-\mathbb{E}[X]|>\epsilon t] \tag{7}
\end{equation*}
$$

By Chebyshev's inequality,

$$
\begin{equation*}
\mathbb{P}[|X-\mathbb{E}[X]|>\epsilon t] \leq \frac{\operatorname{Var}[X]}{\epsilon^{2} t^{2}} \tag{8}
\end{equation*}
$$

Let p be the probability that $X_{i}=1$. Then, $\mathbb{E}\left[X_{i}\right]=p$ and $\operatorname{Var}\left(X_{i}\right)=p(1-p)$. By linearity of expectation, $\mathbb{E}[X]=k p$ and by pairwise independence, $\operatorname{Var}(X)=k p(1-p) \leq \mathbb{E}[X]=(1+\epsilon) t$. Thus,

$$
\begin{equation*}
\mathbb{P}[|X-\mathbb{E}[X]|>\epsilon t] \leq \frac{(1+\epsilon) t}{\epsilon^{2} t^{2}}=\frac{(1+\epsilon)}{c} \tag{9}
\end{equation*}
$$

We can choose the value of c so that $\frac{(1+\epsilon)}{c} \leq \frac{1}{6}$. Putting this together, we get,

$$
\begin{equation*}
\mathbb{P}\left[y_{t}<\frac{(1+\epsilon) t}{k}\right] \leq \frac{1}{6} \tag{10}
\end{equation*}
$$

the proof of the other direction is the same except that the Chebyshev bound is in the other direction.

For this scheme, we need $O\left(\log \left(\frac{1}{\delta}\right)\right)$ different hashes and for each hash we need to store $t=O\left(\frac{1}{\epsilon^{2}}\right)$ values. Thus, the memory of the algorithm will be $O\left(\frac{1}{\epsilon^{2}} \log \left(\frac{1}{\delta}\right)\right.$.

