CS 368 (Stanford, Spring 2022) Lecture 2

Adapted from CS 369G, Spring 2016. Scribes: Stephen Mussmann, Paris Syminelakis.

Streaming Algorithms

1 Overview

In this lecture, we derive a concentration inequality for an algorithm for counting distinct
element in a stream using pairwise independent hash functions.

2 Review

Last lecture we examined the problem of estimating the number of distinct elements in a
stream. We found a solution that performed better than the brute force approach of keep
an enormous hash table. The solution that was presented was a probabilistic algorithm that
gave an (1 + €) approximation with probability 1 — 9. Further, the algorithm required space

O(; log(5))

More precisely, we defined Y as the minimum hash value of the stream. For a fully independent
hash, we found that

1

=151

(1)

where k is the number of distinct elements. Recall that we combined many copies of Y using

: : : . 1
independent hashes to provide an estimate. In particular, we created O(Iog(g)) groups of

1 :
hashes where each group had 0(6—2) hashes. For the estimate, we computed the mean of
each group, then calculated the median of these means.

3 Sketches

Informally, a data sketch is a smaller description of a stream of data that enables the calcula-
tion or estimate of a property of the data. An important attribute of sketches is that they are
composable. Suppose we have data streams S; and S, with corresponding sketches sk(S;)
and sk(S,). We wish there to be an efficiently computable function f where

Sk(51 U 52) = f(Sk(Sl), Sk(SQ)) (2)



4 Bounds for Pairwise Independent Hashes

In the analysis of the distinct element sketch from last time, we relied on a fully independent
family of hash functions. Unfortunately, such hash functions are not practical. Here, we
examine pairwise independent hashes. Recall that a pairwise independent family of hash
functions satisfies

Pplh(x1) = y1, h(x2) = y2] = Pplh(x1) = y1]Pa[h(x2) = ys] (3)

4.1 Example

Choose p to be a large prime number. Let a,b € [p]. Let us define the following hash
function h,, : [p] — [p] as

ha.p(x) = ax + b(mod p) (4)

This family of hash functions is pairwise independent.

In particular, for this family of hash functions, we have the following bounds

1 2

3 1

PlY > — —
> 1<3 (6)

1 . . .
We can then make O(log(<)) copies of the hash and take the median to be an estimate that
is within a factor of 3 of the true answer with probability 1 — .
The first bound has an easy proof in the continuous case since we can do a union bound on

1 1
the interval [0, 3—k] among k elements to get a probabilistic bound of 3

4.2 General Pairwise Independent Analysis

To get a general bound for pairwise independent hash families, we need to change the algo-
rithm. Instead of taking the mean of the min within a group of hashes, we keep track of the
smallest t hash elements. Let y; be the /" smallest element. For this setup, our estimator is

t/ye.
Theorem 1. Fix t = c/€*. With probability 2/3,

(1—6)L‘<ytS (14/—(6)1“



Proof. Let us first prove the second inequality first.
t
Let / =0, (1 +6)E]. Let X; be an indicator variable for the event h(x;) € I. Let X = ZX,-.
Thus, X is the number of hash values in the interval /. I
t
Note that E[X] = ZE[X,—] =k(1+e) =1+t

(1+e)t
k

Ply; > ] = P[X < t] = P[X — E[X] < —et] < P[|X — E[X]| > et] @)

By Chebyshev's inequality,

Var[X]

PIX ~EX]| > et] < =57

(8)
Let p be the probability that X; = 1. Then, E[X;] = pand Var(X;) = p(1—p). By linearity of

expectation, E[X] = kp and by pairwise independence, Var(X) = kp(1—p) < E[X] = (1+€)t.
Thus,

1+t _(L+e)

P[|IX —E[X]| > €t] < 9
[IX —EIX]| > ef] < ; (9)
(1+¢) 1 _ .
We can choose the value of ¢ so that - < 5 Putting this together, we get,
1+e¢)t 1
Pl < 11 <2 (10

the proof of the other direction is the same except that the Chebyshev bound is in the other
direction. []

1
For this scheme, we need O(Iog(g)) different hashes and for each hash we need to store

1 1 1
t = 0(6_2) values. Thus, the memory of the algorithm will be O(E—2 Iog(g).



	Overview
	Review
	Sketches
	Bounds for Pairwise Independent Hashes
	Example
	General Pairwise Independent Analysis


