CS 368 (Stanford, Spring 2022) Lecture 3

Adapted from CS 369G, Spring 2016. Scribes: Stephen Mussman, Spencer Yee, Michael
Xie, Paris Syminelakis.

Lower bounds for streaming; Frequency moments

1 Overview

In this lecture, we present a proof technique to prove lower bounds for streaming algorithms.
We define the concept of a frequency moment and propose an algorithm to estimate F.
Finally, we discuss how to implement efficient hash functions for the AMS second frequency
moment estimator and the notion of linear sketches.

1.1 Proving Lower Bounds on Streaming Algorithms

In this section we describe a common technique for deriving bounds for streaming problems.
For this technique, we specify /1, ..., Iy different streams. If we can show that the algorithm
must have a unique state after processing each stream, Q(log(N)) is lower bound on the
space since the algorithm must distinguish the N different streams.

In order to show that the algorithm must have different states after processing two streams /;
and /;, we can construct an additional stream /" such that the algorithm must give a different
result for /; U/’ than for [; U /.

Using this technique, we can prove a lower bound for a deterministic, approximate algorithm
for the distinct element problem. Let {S;}", be subsets of [n] that satisfy

vitlsil= 15 (1)

(2)

n

£i:|S, 1<
Vi#J |Sﬁ51|_20

2CN

With a probabilistic construction, we can find subsets that meet these requirements.

Note that the number of distinct elements in S; U S; is (n/10) while the number of distinct
elements in S;US; (for i # j) is at least (3/2)(n/10). Thus, any deterministic, approximate
algorithm must distinguish the N streams corresponding to the sets S;. Thus, Q(log(2<V)) =
Q(n) is a lower bound on the required space.

1.2 Algorithms for Frequency Moments

Define f; as the number of times that element / appears in a stream.

The t*" frequency moment is the quantity,

thszt (3)

Note that Fo is the number of distinct elements (assuming 0° = 0). F; is simply the number
of elements in the stream, and thus is trivial to compute. F> is a measure of skewness and
is the problem we will next examine, which has a solution given in [.

Suppose we have a hash function h: U — {£1}. LetY = Zh(x,) be a random variable.

i
This variable is a sketch because we can simply add the sums of two different sets. Further,
Y2 is an unbiased estimate of F.

To see this, define the random variable X; = h(x;) and note that Y = Z ;. X;

E[Y?] = E[(}_ X)) (4)
=E[)_ fifX:X]] (5)
= AAEIXiX)] (6)

=D f (7)

The last equation follows from the fact that E[X;X;] =0 if i # j.

We need a bound on the variance in order to obtain a concentration inequality.

B =EI}_ iX) =D _f'+6) £*F (8)
Thus, |
Var[y?] = E[Y*] - E[*) (9)
=6 PRI +2) 747 (10)
| — 421;,252 < 2F2 : 21[-«:[»/2]2” (11)

iJ

Thus, we can use Chebyshev's inequality to establish concentration around the mean and
then use the median of means technique.

2 Second Frequency Moments

In the previous section, we saw an elegant estimator for the second frequency moment for a
stream. We will review the details of this estimator. We require a hash function h : [n] —
{£1} which we assume to be random, and we define the frequency f; as the number of copies
of element / in a stream, so the second frequency moment F is Zf,-Q. Start with a counter Y
initialized to 0, and add h(/) to Y for each element / in the stream. In the end, Y = L f;h(/),
and Y? is our estimator for F».

For now, think of h(/) as a random variable x;. Then Y = ¥ f;x;, and as shown in the previous
lecture, E[Y?] = F, and Var[Y?] < 2F2, the desired properties for our estimator. The key
observations that yielded those results were E[x?] = 1, E[x] = 0, E[xx] = 0, and what
the value of E[x;x,X;X;,] is, depending on the number of distinct x;. Ignoring the problem
of how to implement h, Y requires very little space, has the right expectation, and a small

. . _ _ 1 1
variance, so we can apply median of means. This means that in O (6—2 log (5)) space, we

can estimate F» within € error with probability at least 1 — 4.

Now we address the issue of how to implement the hash function. We've assumed that the
hash function is random, but in order to implement a random hash function, we essentially
need to store the hash value for every element in the set, which is n bits. So we can't
use a completely random hash function. Looking back at our key observations, though, the
properties of randomness that we require can be satisfied with a 4-wise independent hash
function, where

Prih(x1) = a1, h(x) = ax, h(xs) = a3, h(xa) = as] = H Prih(x) = ai].

i=1

There are 4-wise independent hash functions that only require O(log n) space and O(log n)
evaluation time, so we can indeed estimate f, with a small amount of space.

2.1 Linear Sketches

This is an example of a linear sketch. We can think of the input stream as a vector x € R"
where the /-th element of x is f;, where each element in the stream updates x. Then we
can represent that d copies of Y that we are storing as Ax, where A € R?*". Each row
of A represents a different 4-wise independent hash function, and the /-th entry in a row
representing hash function h is simply h(i). We don't actually store the entire matrix A;
instead, we have an implicit representation that allows us to compete each coordinate when
needed. Every time an element in the stream appears, we update x with Ax, a vector with 1 in
one coordinate and Os in the others. The sketch is incremented by AAx, which is equivalent to
updating our copies of Y with the appropriate hash values of the new element. The fact that
this is a linear sketch is useful, since we can use operations such as addition and subtraction.
Combining linear sketches is very simple, since Ax + Ay = A(x + y).

We can also think of the input as being updates to coordinates rather than elements. In the
turnstile model, the input is x, and updates are changes to one coordinate of x, which need

not be +1. Linear sketches support this. We can also have negative updates, which are also
supposrted by linear sketches.

References

[AMS99] Noga Alon, Yossi Matias, and Mario Szegedy. “The space complexity of approx-

imating the frequency moments”. In: Journal of Computer and system sciences
58.1 (1999), pp. 137-147.

	Overview
	Proving Lower Bounds on Streaming Algorithms
	Algorithms for Frequency Moments

	Second Frequency Moments
	Linear Sketches

