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The Johnson Lindenstrauss Lemma
The fact that we can estimate the second frequency moment very well with a small amount
of space is perhaps less surprising given the Johnson-Lindenstrauss Lemma. The statement
is as follows.

Lemma 1. (Johnson-Lindenstrauss [JL84]) Let G ⊂ (Rd , l2) be a set of n points. Then for

any 0 < ϵ <
1

2
and k = O(log(n)/ϵ2), there exists a mapping f : Rd → Rk such that for all

vi , vj ∈ G,
(1− ϵ)∥vi − vj∥2 ≤ ∥f (vi)− f (vj)∥2 ≤ (1 + ϵ)∥vi − vj∥2

For the l2 norm, it is not hard to show that a set of n points can be mapped to a (n − 1)-
dimensional space without distance distortion and further, that n − 1 dimensions are indeed
needed to preserve distances exactly. What is amazing about the Johnson-Lindenstrauss
Lemma is that we can reduce the dimensions to O(log(n)/ϵ2) if we are willing to tolerate a
small 1 + ϵ distortion in pairwise distances. Many computational tasks on high dimensional
data suffer from the so-called curse of dimensionality, i.e. the complexity of the best known
algorithmic solutions scale very poorly with dimension, typically with an exponential (or worse)
dependence. The Johnson-Lindenstrauss lemma provides a generic tool which reduces the
dimensionality of the data at the cost of a slight distortion in pairwise distances.

The existence of such a mapping can be proven using a linear mapping of the form

f (v) =
Mv√
k

where M ∈ Rk×d and Mi j = N (0, 1), a matrix with elements that are drawn i.i.d. from the
unit normal distribution. Note that M is data-oblivious; we do not use information from the
n points to define its elements.

We remark that the Johnson Lindenstrass Lemma was a helper geometric lemma in the
Johnson Lindenstrauss paper [JL84] which was about the metric extension problem. However,
this geometric lemma turned out to be the most influential contribution of their paper, at least
outside mathematical circles. Progressively simpler proofs were given by Frankl and Maehara
[FM88], Indyk and Motwani [IM98], and Gupta and Dasgupta [DG03]. The argument we
outline here is closest to the presentation in [DG03].

We use the following tail bound on chi-squared distributions to show the JL lemma.

Lemma 2. Let Z1, . . . , Zk be i.i.d. unit normal random variables. Let Y =
∑
i

Z2i . Then

Pr
[
(1− ϵ)2k ≤ Y ≤ (1 + ϵ)2k

]
≥ 1− 2e−cϵ2k
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for some suitable constant c .

Consider the case where the input vector v ∈ Rd is a unit vector. Then for row i of M, we
have

(Mv)i = M
T
i v =

d∑
j

Mi jvj =

(
d∑
j

vj

) 1
2

Y = Y

where Y is unit normal. Therefore in the case where the input is a unit vector, the output
coordinates are distributed as i.i.d unit Gaussians. Then we can conclude that

Pr

[
(1− ϵ) ≤

∥∥∥∥Mv√k
∥∥∥∥
2

≤ (1 + ϵ)
]
≥ 1− 2e−cϵ2k

or equivalently,
Pr
[
(1− ϵ)2k ≤ ∥Mv∥22 ≤ (1 + ϵ)2k

]
≥ 1− 2e−cϵ2k

since ∥Mv∥22 =
k∑
i

(Mv)2i is a sum of squared unit normal distributions, on which we can

invoke Lemma 2.

For general inputs v , we can write ṽ = v/∥v∥2 so that, using the result above,

Pr

[
(1− ϵ) ≤

∥∥∥∥Mṽ√k
∥∥∥∥
2

≤ (1 + ϵ)
]
≥ 1− 2e−cϵ2k

Then it follows that

Pr

[
(1− ϵ)∥v∥2 ≤

∥∥∥∥Mv√k
∥∥∥∥
2

≤ (1 + ϵ)∥v∥2
]
≥ 1− 2e−cϵ2k .

Taking the inputs v to be the
(
n

2

)
differences between pairs of points in the original space, we

use the union bound to show that we can make the failure probability small. The failure proba-
bility for a particular difference vi j = vi−vj is at most 2e−cϵ

2k . Choosing k = (c ′ log(n))/ϵ2 for
some suitable constant c ′, we have that the failure probability is at most 2e−cc

′ log n. Choos-
ing sufficiently large constants so that this failure probability is less than (1/n3), by union
bound over the O(n2) pairs, the failure probability of the random scheme for finding the linear
mapping M is bounded by (1/n).

In terms of improvements to this basic scheme, Achlioptas [Ach01] showed that the random
projection can be obtained from a random matrix M with iid uniform random {±1} entries.
The fast JL transform of Ailon and Chazelle[AC09] constructsM with structure such that the
projection of a d-dimensional point can be computed in time roughly O(d log d + log3 n/ϵ2))
can be done. For more general versions of the Johnson-Lindenstrauss Lemma, see [KM05;
IN07; Mat08].

Another note is that the F2 estimator in some sense also preserves the l2 distances between
data streams using a linear mapping; using the Johnson-Lindenstrauss argument with the
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relaxation that each pair of distances have low distortion with high probability, we can find

that we can reduce to a dimension k = O
(
1

ϵ2
log

(
1

δ

))
, similar to the space requirement

in the F2 estimator. For dimension reduction schemes where the norm in the original and
reduced space is the same, it is not possible to prove results similar to Johnson-Lindenstrauss
(i.e. there are strong lower bounds on the number of dimensions needed) for l∞ [AR92;
Mat96] and for l1 [BC05].
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