Shortest Paths
Assumption: Unweighted graph, arrivals only
Algorithm:

$$H \leftarrow \varphi$$

For (U,V) in stream do
 $H \leftarrow H \cup \{U,V\}$
return H
O Shortest path dutaness in H vs. true dutaness
 \bigcirc Space?
Lemma: $d_q(s,t) \leq d_H(s,t) \leq \alpha d_G(s,t)$
 $G:$ graph of all edges
Proof: $I^{st}: H \subseteq G$
 $I^{st}: H \subseteq G$
 $I^{st}: H \subseteq G$
 $I^{st}: H = G$
 $I^{st}: I^{st}: H \subseteq G$
 $I^{st}: I^{st}: H = G$
 $I^{st}: I^{st}: H = G$
 $I^{st}: I^{st}: I^{st}: H = G$
 $I^{st}: I^{st}: I^{st}:$

Uaim: Resulting graph 4 non-empty
If we removed all vertices, we remove
$$< \frac{m}{n} \cdot n = m$$

edges
Consider any of remaining hodes
Constant
Cons

$$\alpha + 2 = 2t + 1$$

$$t = \frac{\alpha + 1}{2} \implies \# edges \quad O\left(n^{1 + \frac{2}{\alpha + 1}}\right)$$

Lower bound for shortest paths between all pairs of vertices

Exact dutances need
$$\mathcal{L}(n^2)$$
 bits
 $2^{\binom{n}{2}}$ labeled graphs on a vertices
must have dutance representation for each $\binom{1}{2}$
Why? For any pair, $\exists (u,v)$ in one graph d not in other
 $d(u,v) = 1$ for one
 $d(u,v) > 1$ for other
So we need $\log(2^{\binom{n}{2}}) = \binom{n}{2}$ bits.

Lower bound for Opproximate distances
fait: I graph with
$$n^{1+k}$$
 edges and no cycles of
thight 5 ck+1 for some constant c
Erdess girth conjecture: I graphs unch $l(n^{1+\frac{1}{k}})$ edges and
 $2^{n^{1+\frac{1}{k}}}$ subgraphs
for every pair of subgraphs $F(u,v)$ st. $d(u,v) = 1$ in one
 $d(u,v) > ck$ in other
In order to get ck approximation
we need $log(2^{n^{1+\frac{1}{k}}})$ but $= n^{1+\frac{1}{k}}$ buts.
Lower Bounds via Communication Complexity
Setup: Alice has string $x \in \{0,1\}^{a}$
Bob has string $y \in \{0,1\}^{b}$
They need to compute $f(x,y)$
() Communication over nonzy rounds
for streaming algorithms, we consider One-way communication
(2) Deterministic, Randomized (public randomized)
(3) Error probability $\varepsilon < \frac{1}{2}$ (say $\frac{1}{3}$)
Connection to Streaming
(4) Small-space streaming algo imply how-communication
(5) Such a probability on one of the complexity
(6) Such a probability on the cruit (from Communication
(7) Such a probability on the cruit (from Communication

Lemma: Every deterministic protocol for
$$\text{DisJ}(2, y)$$
, $x, y \in \{0, 1\}^n$
needs n bits of communication.
Avoid: 2^h strings $\in \{0, 1\}^n$
If we use less than n bits of communication
 $4 \ 2 \ \text{strings}$ that are mapped to same message
 $x^{(n)}, x^{(2)}$ differs in some bit say i
 $x_{i}^{(n)} = 1, \ x_{i}^{(2)} = 0$
 $y_i = 1, \ y_j = 0 \ j \neq i$
Then Randomized protocol for Dist (x-y) with success
prob. $3, \frac{2}{3}$, must we $l(n)$ bits of communication

Corollary: Any randomized algorithm to extimate
$$F_{\infty}$$

within $(1 \pm \cdot 2)$ must use $\mathcal{L}(n)$ bits
 P_{\pm} : If we can approximate F_{∞} , we would be able to
compute disjointness
Given $z \in \{0, 1\}^n$ $y \in \{0, 1\}^n$

$$S_{x} = 2i : x_{i} = 13$$
 $S_{y} = 2i : y_{i} = 13$
 $O = S_{x} \cap S_{y} = 4$ $F_{0} \in 20, 13$
 $O = S_{x} \cap S_{y} \neq 4$ $F_{0} = 2$

Lemma (Vao) If there excits a distribution D over all possible
input strings
$$(x, y) \in \{0, 1\}^d \times \{0, 1\}^b$$
 st. for any
deterministic one-way protocol P with
 $\Pr_{(x,y) \in \mathbb{D}} [P$ returns wrong assume on $(x, y)] \leq \mathbb{E}$
the communication cost $u \geq K$ (public random bill)
then any randomized one-way protocol with error $\leq \mathbb{E}$
on every input has communication cost $\geq K$
Any randomized protocol w. public randomness
 u distribe over deterministic protocols !