Shortest Paths
Assumption: Unweighted graph, arrivals only
Algorithm:
$H \leftarrow \phi$
For (u,v) in stream do If $d_{H}(u, v)>\alpha$ then $H \leftarrow H \cup\{u, v\}$
return H
(1) Shortest path dutances in H vs. true dutanes (2) Space?

Lemma: $\quad d_{G}(s, t) \leqslant d_{H}(s, t) \leq \alpha d_{G}(s, t)$ G : graph of all edges
Proof: $1^{\text {st }}: H \subseteq G$
$2^{\text {ad }}$: If (a, v) not included, 7 path of length α between $u d v$

H that satufies this is called α-spanner
girth: length of shortest cycle
Lemma: H has girth at least $\alpha+2$
Proof (by contradiction) suppose H had a cycle of length $\leqslant \alpha+1$ Consider last edge (u,v) added to cycle $d_{H}(u, v) \leqslant \alpha \Rightarrow(u, v)$ would not be added

The: A graph with gush $2 t+1$ has $O\left(n^{1+\frac{1}{t}}\right)$ edges
Pf: m : \#edges $d=\frac{2 m}{n}$ average degree $\frac{d}{2}$ core of graph: iteratively remove nodes of degree $<\frac{d}{2}$

Claim: Resulting graph is non-empty
If we removed all vertices, we remove $\left\langle\frac{m}{n} \cdot n=m\right.$ edges
Consider any of remaking nodes
Construct depth t tree by performing t steps of BFS
(1) Every node withe depth t has unique path of length $\leq t$

(2) Every node has degree $\geqslant \frac{d}{2}$

Tree has at least $\left(\frac{d}{2}-1\right)^{t}$ nodes $\leq n$

$$
\begin{gathered}
\left(\frac{m}{n}-1\right)^{t} \leq n \\
m \leq n^{1+\frac{1}{t}}+n=O\left(n^{1+\frac{1}{t}}\right) \\
\alpha+2=2 t+1 \\
t=\frac{\alpha+1}{2} \Rightarrow \text { \#edges } O\left(n^{1+\frac{2}{\alpha+1}}\right)
\end{gathered}
$$

Note: We ignored update time
Can achieve $O(1)$ update tune by more sophurtcated methods
Lower bound for shortest paths between all pairs of vertices Exact dutanes need $\Omega\left(n^{2}\right)$ bits
$2^{\binom{n}{2}}$ labeled graphs on n vertices must have dustenct representation for each!
why? For any pair $y(u, v)$ in one graph 4 not in other $d(u, v)=\frac{1}{\text { fo }}$ one
$d(u, v)>1$ for other
So we need $\log \left(2^{(\hat{2})}\right)=\binom{n}{2}$ bits.

Lower bound for approximate distances
Fact: 7 graph with $n^{1+\frac{1}{k}}$ edges and no cycles of length $\leq c k+1$ for some constant c
Erdios gush conjecture: 7 graphs with $\frac{l}{\text { gush }} 2 k+1\left(n^{1+\frac{1}{k}}\right)$ edges and
$2^{n^{1+\frac{1}{k}}}$ subgraphs
For every pair of subgraphs $7(u, v) \quad$ st. $\begin{aligned} & d(u, v)=1 \\ & d(u, v)>c k\end{aligned}$ in one other
In order to get $c k$ approximation we need $\log \left(2^{n^{1+\frac{1}{k}}}\right)$ bis $=n^{1+\frac{1}{k}}$ bits.

Lower Bounds via Communication Complexity
Setup: Allee has string $x \in\{0,1\}^{a}$
Bob has string $y \in\{0,1\}^{b}$
They need to compute $f(x, y)$
(1) Communication over many rounds For streaming algorithms, we consider one-way communication
(2) Deterministic, Randomized (public randomness)
(3) Error probability $\varepsilon<\frac{1}{2} \quad\left(\right.$ say $\left.\frac{1}{3}\right)$

Connection to Streaming
(1) Small-space streaming algo imply low-communication
(2) Such a protocol does not exist
(from Communication Complexity

Stream: x, y

Disjountness Problem
Given 2 binary strings $x, y \in\{0,1\}^{n}$

$$
\operatorname{DISJ}(x, y)=\left\{\begin{array}{lll}
1 & \text { of } f i \quad x_{2}=y_{2}=1 \\
0 & \text { otherwise }
\end{array}\right.
$$

Lemma: Every deterministic protocol for $D 1 S J(x, y), x, y \in\{0,1\}^{n}$ needs n bits of communication.
Roof: $2^{\text {n }}$ strings $\in\{0,1\}^{n}$
If we use les thar n bits of communication 72 strings that are mapped to same message $x^{(1)}, x^{(2)}$ differ in some bt say i

$$
\begin{aligned}
& x_{i}^{(1)}=1, \quad x_{i}^{(2)}=0 \\
& y_{i}=1, \quad y_{j}=0 \quad \jmath \neq L
\end{aligned}
$$

The Randomized protocol for Dis] (x, y) which success prob. $\geqslant \frac{2}{3}$, mutt use $\ell(n)$ bits of communication

Corollary: Any randomized algorithm to estimate F_{∞} within $(1 \pm .2)$ mut we $\Omega(n)$ bits
ff: If we con approximate f_{∞}, we would be able to compute dujolatness
Given $x \in\{0,1\}^{n} \quad y \in\{0,1\}^{n}$

$$
S_{x}=\left\{i: x_{i}=1\right\} \quad S_{y}=\left\{l: y_{l}=1\right\}
$$

(1) $S_{x} \cap S_{y}=\phi \quad F_{\varnothing} \in\{0,1\}$
(2) $S_{x} \cap S_{y} \neq \phi \quad F_{g}=2$

Lemma (400) If then exults a distribution D over all posschle input strings $(x, y) \in\{0,1\}^{a} \times\{0,1\}^{b}$ st. for any determencestic one-way protocol P with
$\operatorname{Pr}_{(x, y) \in D}[P$ returns wrong answer on $(x, y)] \leqslant \varepsilon$
the communication cost $u \geqslant K$ (public random $b A A$)
then any randomized one-way protocol with error $\leqslant \varepsilon$ on every input has communication cost $\geqslant k$

Any randomized protocol w. purdue randomness is dutubn over deter mimetic protocol!

