Streaming Lower Bounds via Communication Complexity

$$x, y \in \{0, 13^n$$

 $DISJ(x, y) = \begin{cases} 0 & \text{iff } (x, y) = 0 \\ 1 & y \in 1 \end{cases}$

INDEX
Given
$$x \in \{0, 1\}^n$$
 index $i \in [n]$
compute (NDEX $(x, i) = x_i \in \{0, 1\}$

Claim: In order to solve INDEX(x, i) can solve DISJ(x, e.)

$$\frac{P_{f}}{2}: \text{ rao's lemma: construct a distribut D on (X, C) st.}$$

$$\frac{Q_{hy}}{2} \text{ deterministic protocol w. low error uses L(n) bits.}$$

$$D: X \in \mathbb{R} \{0, 1\}^{n}, \quad i \in \mathbb{R} [n]$$

Any deterministic protocol with
$$\leq 0.1 n$$
 bits of communication
must have error $\geq \frac{1}{8}$ 1
 $C=0.1$

Fix det. One-way protocol P with $\leq cn$ bets of communication Aluce sends only 2^{cn} distinct messages Z to Bob $f: \{0, 1\}^n \rightarrow \{0, 1\}^{cn}$ Alue's for mapping input x to output Z

Answer vector
$$Q(z) \in \{0,1\}^n$$

$$\begin{cases} 2^{Cn} \mod 2 \implies \leq 2^{Cn} \operatorname{answer Vectors} a(2) \\ Fix Allice's input z, resulting in message Z = Z(z) \\ Protocol is Correct for bot's input i iff $a(2)_i = z_i$
Bob's index i chosen uniformly
 $Pr_i [P \text{ is incorrect } [z, z] = \frac{dH(x, a(2))}{n}$
Good:
 W constant prob. over choice of z
this expression is larger than a constant
 $A = \{a(z(x)) : x \in [0, 1]^n\}$ set of pli answer vectors
 (z, d) by protocol P
 $[A | \leq 2^{Cn}$
Alice's input x is good if 9 answer vector $a \in A$
with $d_H(x, a) \leq \frac{n}{4}$, bod otherwise
 $(a_i) = \frac{n_i}{a_2}$
 $(a_i) = \frac{n_i}{a_2}$
 $Pr_{(i,j)\in D}[P is isong on (x,y)] = Pr(x is good) \cdot Pr[P isong on (x,y) | x is bod]$
 $Pr_{(i,j)\in D}[P isong on (x,y)] = Pr(x is good) \cdot Pr[P isong on (x,y) | x is bod]$
 $protocol P$
 $Pr_{(a,j)\in D}[P isong on (x,y)] = Cx(z is good) \cdot Pr[P isong on (x,y) | x is bod]$
 $pr_{(a,j)\in D}[P isong on (x,y)] = V(x is bod) = Ex[\frac{dH(x, a(z(x)))}{n}] > is bad]$
 $pr_{(a,j)\in D}[P isong on (x,y)] = V(x is bod) = Ex[\frac{dH(x, a(z(x)))}{n}] > is bad]$$$

Goal: Any streaming algo. that computes (1+c) approx
q Fo, Fz needs
$$\mathcal{L}(\frac{1}{2\pi})$$
 space
Focus on extreme case $(1+\frac{1}{2\pi})$ approx requires $\mathcal{L}(n)$ space
Special case has all ideas needed for $\mathcal{L}(\frac{1}{2\pi})$ bound
Disjointness doesn't work
Suppose we have streaming algo S that gives
 $(1+\frac{1}{2\pi})$ approx to Fo
Follow redⁿ for Fo
Aluce's uput x, Bob's input y : concatenate xy
DISJ(x,y)= 0 Fo(xy) = [x]+[y] n
= 1 Fo(xy) \leq [x]+[y] n
(1+\frac{1}{2\pi}) approx of Fo gives additive error of \sqrt{n}
Relate to Hamming Dictance
x, y $\in \{0, 1\}^n$ Universe $\mathcal{U} = \{1, ..., n\}$
x, y : characteristic vectors of subsets A, B of \mathcal{U}
d $\mathcal{U}(x,y) = 2F_0 - [x] - [y]$
Bob knows y, Aluce can send (x) to Bob wing $\log_2 n$ bits

Goal: Hammong dustance estimation w. additive emor has large communication complexity

Promise problem GAP-KAMMING(t) reduces to (H fm) approx of Fo How to pick t? t=0? t=cJn GAP-HAMMING(cJn)=? 1 of dh(x,y) = 0 20 f dh(x,y) > 2EJn undefend otherwise

We will pick t= =