Approximate Neavest Neighbor Search Given points Pi -- Pn EIRd Preprocess data set to answer nearest neighbor queries: Given query point q EIRd, find arg min d (pi, q) Pi Brute Force BF+dim red" Storage nd n log(r)/e² $n d \log(n)/\epsilon^2$ The processing nd n log(n)/E² Query Can we answer queries in sublinear time NNS in high dim": many data structures have exponential dependence on dimension

- Curse of dimensionality

Approximate NNS

Relaxed Goal: Return
$$p_i$$
 so that
 $d(q, p_i) \leq c \cdot \min_{p_j} d(q, p_j) \quad c \geqslant 1$
 p_j

Intrunsic dimensionality of data: Complexity of data could be low even if points be in high dim eg. How dimsional manifold.

Doubling dimension dim (X) of metric space (X, d)
in min value of
$$p$$
 st. every ball in X can be covered by
 2^p balls of held the diameter.
X = 1R^K with any norm dim (X) = $\theta(K)$
Result: [Krawtigamur, Lee 02]
Navigating Nets
size: $2^{0(dim(S))}$. n
 $(hrighter)$ approx heavest beginhor in time
 $2^{0(dim(S))}$. $\log \Delta + (\frac{1}{2})^{0(dim(S))}$
Aspect ratio $\Delta = \frac{dmax}{dmin}$
(Laim: Exact heavest heighbor in time
 $2^{0(dim(S))}$. log n
[KOR '98] [IM '98]
 $(trighter)$ approx heavest neighbor in time
 $2^{0(dim(S))}$. log n
[KOR '98] [IM '98]
 $(trighter)$ by the storage.
 $interprotection for the storage.
 $interprotection for the storage.$
 $interprotection for the storage.
 $interprotection for the storage.$
 $interprotection for the storage for the storage.$
 $interprotection for the storage fo$$$

(an be used to design algo for approximate NNS
Focus on following problem:
If I point within distance r of q, return a point within cr
To solve NNS, multiple copies for different values of r
Sample K hash in from (r.cr. p., p.)-LSH family

$$g(x) = h_1(x) h_2(x) \dots h_K(x)$$

 $g(x) = g(y) h_1(x) = h_1(y) \neq i$
 $g(x) = g(y) h_1(x) = h_1(y) \neq i$
 $d(x,y) \leq r$ $P_1[g(x) = g(y)] \leq p_2^K$
Choose K so that $p_2^K = \frac{1}{n}$ $K = \frac{\log n}{\log(\frac{R}{2})}$
 $P_1 = p_2^R$ $f = \frac{\log(\frac{N}{2})}{\log(\frac{N}{2})}$
 $p_1^K = \frac{1}{n} \Rightarrow p_1^K = \frac{1}{n^C}$
 $P_r[good point collisions] \leq 1$
 $P_r[good point collisions] \geq \frac{1}{n^C}$
 $Repeat n! times$
 $n! hash tables$
 $n! point tables$
 $n! point tables$
 $n! point tables$
 $n! prometer over LSH schemes for all r$

Hamming Metric:
p.
$$\in \{0, 1\}^{d}$$

hash f^{n} : pick random coord
 $d(x,y) \leq r$ $fr[h(x) = h(y)] \geq 1 - \frac{r}{4} \approx e^{-t/d}$
 $d(x,y) \geq cr$ $fr[h(x) = h(y)] \leq 1 - \frac{cr}{4} \approx e^{-cr/d}$
 $p_{1} = p_{2}^{1/c}$ $p = \frac{1}{c}$
Best possible for Hamming
 l_{1} norm : same result
What is the hash f^{n} ? Pick random coord i, threshold t
 $I = \frac{1}{c}$
Enclidean space: l_{2} horm
 l_{2} embeds into l_{1} isometrically, so we can get $p = \frac{1}{c}$
[DIIM'04] map to random line, split into buckets of width w
 $h_{L}(x) = \lfloor \frac{x \cdot L + \kappa}{w} \rfloor \qquad \ll G_{R}(0, w)$

$$[AI'06] \text{ map } T: X \longrightarrow IR^{d}$$

$$\text{vandom seq } S_{1} S_{2} \dots \in IR^{d}, \text{ fin radius } S$$

$$h_{S}(x) = \arg \min_{i>0} \pi(x) \in B_{S}(S_{i})$$

$$index q \text{ first ball containing } \pi(x)$$

$$P \longrightarrow \frac{1}{C^{2}} \text{ on } d \rightarrow \infty$$

$$P = \frac{1}{C^{2}} \text{ optimal}$$

Data Dependent Hashing
[AR'15] Can achieve
$$p = \frac{1}{2c-1}$$
 for Kammung
 $= \frac{1}{2c^2-1}$ for Euclidean
decompose data set into pseudo-random sets.

Other Hash families:
(ollection of sets

$$sim(A,B) = \frac{|A \cap B|}{|A \cup B|}$$
 Jaccard coeff.
Min-hash scheme (Broder '97]
 $f: U \rightarrow 2^{64}$ (assume no collisions)
 $h(A) = \min_{a \in A} f(a)$
 $Pr\left[\min_{h(A)} f(A) = \min_{h(B)} f(B)\right] = \frac{|A \cap B|}{|A \cup B|}$
"dutance" for $1 - \frac{|A \cap B|}{|A \cup B|}$
Sketches of docr for estimating similarity

Sim-Hash
unit vectors with angular distance
$$\int_{0}^{u} v$$

 $h(u) = sign(\langle r, u \rangle)$ $r : random vector$
 $\Pr[h(u) \neq h(v)] = \bigoplus_{T} \quad \mathfrak{P} = \langle (u, v) \rangle$
used at Google
Cross-Polytope Hash [Andoni et al '15]
unit vector.
 $pick$ random rotation & return index of largest
Magnitude correlate
Achieves $p = \frac{1}{2c^2-1}$