Approximate Neavest Neighbor Search
Given points $P_{1} \ldots P_{n} \in \mathbb{R}^{d}$
Preprocess data set to answer nearest neighbor quavers:
Given query point $q \in \mathbb{R}^{d}$, find $\arg \min _{p_{i}} d\left(p_{i}, q\right)$
Brute force $\quad B F+\operatorname{dim}$ red n
Storage
Preprocessing
nd
$n \log (a) / \varepsilon^{2}$

Query
nd
$n d \log (n) / \varepsilon^{2}$
$n \log (n) / \varepsilon^{2}$
Can we answer queries on sublinear time
NNS in high dim : many data structures have exponential dependence on dimension

- Curse of dimensionality

JL dimension reduction not good enough
Approximate NNS
Relaxed Goal: Return $p i$ so that

$$
d\left(q, p_{c}\right) \leqslant c \cdot \min _{p_{j}} d\left(q, p_{j}\right) \quad c \geqslant 1
$$

Intrinsic dimensionality of data:
Complexity if data could be low even of pouts be in high dian
eq. low demstonal manifold d.

Doubling dimension $\operatorname{dim}(x)$ of metric space (x, d) in min value of ρ st. every ball in X can be covered by 2^{P} balls of half the diameter.
$X=\mathbb{R}^{k}$ with any norm $\operatorname{dim}(x)=\theta(k)$
Result: [Krauthgamer, Lee 'O2]
Navigating Nets
Size: $\quad 2^{O(\operatorname{dim}(s))} \cdot n$
$(1+\varepsilon)$ - approx nearest neighbor in time

$$
2^{O(\operatorname{dim}(s))} \cdot \log _{\uparrow} \Delta+\left(\frac{1}{\varepsilon}\right)^{O(\operatorname{dim}(s))}
$$

Aspect ratio $\Delta=\frac{d_{\text {max }}}{d_{\text {man }}}$
Claim: Exact nearest neighbor in time

$$
2^{O(d \operatorname{dim}(s))} \cdot \log n
$$

[KO R'98] [IM'98]
$(1+\varepsilon)$ approx nearest neighbor in polylog (n) query time poly (n) preprocessing \& storage.

$$
\longrightarrow n^{O\left(1 / \varepsilon^{2}\right)}
$$

[IM'98] Locality Sensitive Hashing:
Den: Family of Hash fin is $\left(r, c r, p_{1}, p_{2}\right)-L S H$ with $p_{1} \geqslant p_{2}, c>1$ of
(a) $\operatorname{Pr}[h(x)=h(y)] \geqslant \rho_{1}$ when $d(x, y) \leqslant r \quad$ (close point)
(b) $\operatorname{Pr}[h(x)=h(y)] \leqslant P_{2}$ when $d(x, y) \geqslant \operatorname{cr}$ (distant point)

Can be used to design algo for approximate NNS focus on following problem:

If 7 point within durance r of q, return a pout within Cr
To solve NNS, multiple copes for different values of 1
Sample K hash
concatenate to get from
hash
$\left(r, c r_{1}, p_{1}, p_{2}\right)-L S H$ fam ely

$$
\begin{gather*}
g(x)=h_{1}(x) h_{2}(x) \ldots \quad h_{k}(x) \\
g(x)=g(y) \quad h_{i}(x)=h_{1}(y) \forall i \tag{q}\\
d(x, y) \leqslant r \quad \operatorname{Pr}[g(x)=g(y)] \geqslant p_{1}^{k} \\
d(x, y) \geqslant c r \quad \operatorname{Pr}[g(x)=g(y)] \leqslant p_{2}^{k}
\end{gather*}
$$

\square

Choose k so that $p_{2}^{k}=\frac{1}{n} \quad k=\frac{\log n}{\log \left(\frac{1}{p_{2}}\right)}$
$\mathbb{E}[$ durant point collisions $] \leqslant 1$ $\mathbb{E}[$ distant point collisions $] \leqslant 1$

$$
p_{1}=p_{2}^{\rho} \quad \rho=\frac{\log \left(1 / p_{1}\right)}{\log \left(1 / p^{2}\right)}
$$

$$
p_{2}^{k}=\frac{1}{n} \Rightarrow p_{1}^{k}=\frac{1}{n^{p}}
$$

$\operatorname{Pr}[$ good pout collusion $] \geqslant \frac{1}{n^{\rho}}$
Repeat n^{ρ} times
n^{p} hash tables
n^{ρ} query time

$$
\left(r, c r, p_{1}, p_{2}\right)-L S H
$$

$n^{1+\rho}$ storage
ρ : best parameter over LSH schemes for all r
$p: f^{n}$ of c and metric d
Hamming Metric:

$$
p_{l} \in\{0,1\}^{d}
$$

hash f^{n} : plek random coord

$$
\begin{array}{ll}
d(x, y) \leqslant r \quad \operatorname{Pr}[h(x)=h(y)] \geqslant 1-\frac{r}{d} \approx e^{-r / d} \\
d(x, y) \geqslant c r & \operatorname{Pr}[h(x)=h(y)] \leqslant 1-\frac{c r}{d} \approx e^{-c r / d} \\
\rho_{1}=p_{2}^{1 / c} & \rho=\frac{1}{c}
\end{array}
$$

Best possible for Hamming
l_{1} norm: same result
What is the hash fin? Pick random cord i, threshold t

$$
P=\frac{1}{c} \quad I_{\left\{x_{i} \geqslant t\right\}}
$$

Endedean space: l_{2} norm
l_{2} embeds into l_{1} isometrically, so we can get $\rho=\frac{1}{c}$
Can do better
[DIIM'O4] map to random line, spletunto buckets of coolth w

$$
h_{l}(x)=\left\lfloor\frac{x \cdot l+\alpha}{w}\right\rfloor \quad \alpha \epsilon_{R}(0, w)
$$

[AI'06] map $\pi: X \rightarrow \mathbb{R}^{d}$
random seq $s_{1} s_{2} \cdots \in \mathbb{R}^{d}$, fix radues δ

$$
h_{s}(x)=\arg _{i} \min _{0} \pi(x) \in B_{\delta}\left(S_{c}\right)
$$

$\rho \rightarrow \frac{1}{c^{2}}$ as $d \rightarrow \infty$
$p=\frac{1}{c^{2}}$ optimal
Data Dependent Hashing
[A R'15] Can achieve $\rho=\frac{1}{2 c-1}$ for Hamming

$$
=\frac{1}{2 c^{2}-1} \text { for Euclidean }
$$

decompose dataset into psendo-random sets.
Other Hash famulus:
Collection of sets

$$
\sin (A, B)=\frac{|A \cap B|}{|A \cup B|} \quad \text { Jaccand coeff. }
$$

mun-hash scheme (Broder '97]

$$
\begin{gathered}
f: U \rightarrow 2^{64} \quad \text { (assume no collusion) } \\
h(A)=\min _{a \in A} f(a) \\
\operatorname{Pr}[\underbrace{\operatorname{mun} f(A)}_{h(A)}=\underbrace{\min _{f(B)} f(B)}_{h(B)}]=\frac{|A \cap B|}{|A \cup B|}
\end{gathered}
$$

"durance" fo $1-\frac{|A \cap B|}{|A \cup B|}$
sketches of docs for estimating simulanty

Sim-Hash
untt vectors wich angular destance

$$
\begin{gathered}
h(u)=\operatorname{sign}(\langle r, u\rangle) \quad r: \text { vandom vector } \\
\operatorname{Pr}[h(u) \neq h(v)]=\frac{\theta}{\pi} \quad \theta=\langle(u, v)
\end{gathered}
$$

used at Google
Cross-Polytope Hash [Andoni et al '15] anct vectas.
pick random rotation \& return index of largest magnitude corbraunate Achleves $\rho \approx \frac{1}{2 c^{2}-1}$

