Massively Parallel Communication (MPC) Inspired by frameworks such as MapReduce, Hadoop, Dryad, Spark Clean algorithmic framework for designing algos. that can be parallelized [KSV '10] MapReduce Class MRC (BKS'13) MPC Input data size : N # machines : M Memory per machin: 5 S>N : single machine suffices typically S= NC C<1 · Computation proceeds in synchronous rounds · In each round, each machine operates on local data then sends/veceives memages to/from other machines · Communication sent/received (S words per round - ignore local computation - tocus on #rounds Other parameters: Replication factor: M.S. Total work / Work Efficiency * ignore asynchronous communication, fault tolerance Graph Problems: n = [V], m = [E]input size N = m # machines $M = \partial(\underline{N})$ Three memory regimes: () Strongly superlinear: S= n^{1+E} 270

(2) Near linear
$$S = \vec{P}(n)$$

(3) Strongly sublinear $S = n^{n}$ $n \in (0, 1)$
Initial data distribⁿ: split across machines arbitrarily
- can "load balance" using hashing in $O(1)$ rounds
S limits communication between machines in single round
How do we send / receive messages to all machines?
Say $S = n!^{te}$, one machine needs to send n words to all
 M machines
 $S = n \cdot n^{e}$
 $n^{e} + n^{e} + n^{e}$
 $n^{e} + 2n^{e}$
 $0(\frac{1}{e})$ rounds

broadcast :

Converge Cast: All machenes any send newsage to root with combination rule : union / intersection / sum

Dense graph problems:
$$N = m = n^{1+c}$$

Superkneer memory : $S = n^{1+c}$
[L M S V'11]: Filtering technique
MST, Matching
Minimum Spanning Tree
Idea: fartition edges into subscript of size $S = n^{1+c}$
and send each subgraph to its own machine
- Each machine computer MST of local subgraph
- throw out edge if the heaviest edge on some cycle in
local subgraph
- throw out edge is not in global MST either
Algorithm MST (V,E)
IJ |E| < S then
compute T* = MST(E)
return T*
 $L = 2|E|/S$
Partition E into E1 -- Ee where $|E_1| < S$
using hash fⁿ h: E -> fli2... l²
In parcellel : compute Ti: mon spanning tree on $G(V,E_i)$
return MST(V, UTi)
Each iteration reduces input size by n^E
Limma: Algo MST (V,E) terminates after $\lceil \frac{c}{E} \rceil$ iterations
by returns MST

14: Convectness (follows from earlier duriussin)
random partitioning
$$\implies$$
 whip each machine gets S edges
 $E[[Ei]] = \frac{S}{2} \cdot whip [Ei] < S$
(Channelle)
 $UTi] \leq L.(n-1) \leq \frac{2|E|}{s} \cdot n = O\left(\frac{|E|}{n^2}\right)$
Terminates in $\lceil \frac{S}{2} \rceil$ rounds.
Motiching:
Maximum Matching
Maximal Matching:
Maximal Matching:
Maximal Matching:
Ideas put subset $E \leq E$ on single machine
Find maximal matching
Remove matched vertices from graph
Continue tub remaining edges fet on single machine
 E' : randomly selected: $|E'| \leq S$
edges decreases by $\sim n^{E}$ in each round
Algorithm
Machine O is free
Edges durished amongst machines $1 - M$
 $Gr(V, Er)$: graph at round $T \in \{0, ..., R\}$
 $G_0:$ input graph
In each round $T:$
 $L. m = |Er|$
2. For $i \in \{1, ..., M\}$ machine i marks each local edge
indetly in prob. $p = n^{HE}/2m$

· • ·

- 4. Machine O computes maximal matching Mr on marked edges, announces matched vertices to machines 1 to M
- 5. For 16 ?1. _ My, machine i discords any local edge that has a matched vertex as an end pt.

Thus: Algorithm terminates in
$$Q(\frac{c}{\epsilon})$$
 rounds

Lemma: W.h.p. #merked edges fit onto single machine Edger sæmpled iv. prob g = <u>nhr</u> Elf#marked edges J: m.p = <u>nhr</u> Apply Chernoff.

Lemma: W.h.p. # remaining edges
$$\leq \frac{4m}{n^{\epsilon}}$$

Pf: I: Unmatched vertices at end of round
No marked edge between any pour of vertices in I
If y marked edge $\{u, v'\}$, at least one of u, v
will be matched. Contradiction

Consider arbitrary subset J of vertices
when J 4m induced edges
P[All induced edges in J unmarked]
$$\leq (1-p) \frac{4m}{n^{\epsilon}} = \int_{p=\frac{n!t \epsilon}{2m}}^{kcall} \frac{1}{2m}$$

 $\leq e^{-p \cdot \frac{4m}{n^{\epsilon}}} = e^{-2n}$
Unron bound over all such sets J (et most 2ⁿ such)

Pr[4 set with >
$$\frac{4m}{n^{\epsilon}}$$
 induced edges, s.t. all unmarked]
≤ 2ⁿ. e⁻²ⁿ
⇒ At most $\frac{4m}{n^{\epsilon}}$ remaining edges at end of round
 $\frac{1}{n^{\epsilon}}$ remaining edges at end of round
Lemma: Algo terminates in $K = O(\frac{\epsilon}{\epsilon})$ rounds
 $O(\log n)$ rounds with near buser memory
[Gheffan et al '18] : $O(1)$ approx in $O(\log \log n)$ rounds
w. near buser memory
(Gheffan, uitto '19] : $O(1)$ approx in $O(\log \log n)$ memory
(Gheffan, uitto '19] : $O(1)$ approx in $O(\log \log n)$
with n^{α} memory $\alpha \in (0, 1)$
 $O(1)$ approx can be turned into $(tr \epsilon)$ approx
using ideas of [McGregor '05]
 $\sim (\frac{1}{\epsilon})^{V_{\epsilon}}$ overhead.