Massively Parallel Communication (MPC)
Inspired by frameworks such as MapReduce, Hadoop, Dryad, Spark Clean algorithmic framework for designing algos. that can be parallelized
[KSv'10] MapReduce Class MRC
[BK S'13] MPG
Input data size: N
\# machines: M
memory per machine: S
$S \geqslant N$: single machine suffices
typically $S=N^{c} \quad c<1$

- Computation proceeds in synchronous rounds
- In each round, each machine operates on local data then sends/veceives messages to/ from other machines
- Communication sent/received $\leq S$ words per round
- ignore local computation
- Focus on \#rounds

Other parameters: Replication factor: $\frac{M . S}{N}$
Total work / Work Efficiency

* ignore asynchronous communication, fact tolerance

Graph Problems:

$$
n=|V|, \quad m=|E|
$$

input size $N=m$
\# machines $M=\tilde{O}\left(\frac{N}{S}\right)$
Three memory regimes:
(1) Strongly superlenear: $S=n^{1+\varepsilon} \quad \varepsilon>0$
(2) Near linear

$$
S=\widetilde{\theta}(n)
$$

(3) Strongly sublenear $S=n^{\alpha} \quad \alpha \in(0,1)$

Inctcal data distrib": spit across machines arbitrarily

- can "load balance" using hashing in $O(1)$ rounds

Slemits communication between machines in single round How do we send/recerve menages to all mackeres?
Say $S=n^{1+2}$, one machine needs to send n words to all

$$
S=n \cdot n^{\varepsilon}
$$

broadcast :
Converge Cast: All machines an send n word message to root which combination rule i union/intersection/sum

Computation output:
Output stored (in distributed fashion) on M machines
Sorting: machine holding Item x knows $\operatorname{rank} / \operatorname{los}^{n}$ of x
Matching: machine holding vertex v knows of v is an end-pt of matched edge (and of so, other end pt.)
Connectivity: machine holding vertex v knows id. of its connected component
If S large enough, entire output on one machine

Dense graph problems: $N=m=n^{1+C}$
Supertenear memory: $S=n^{1+\varepsilon}$
[LMSV'II]: Futering technique
MST, Matching
Minimum Spanning Tree
Idea: Partition edges into subsets of size $\leq S=n^{1+\varepsilon}$ and send each subgraph to us own machine

- Each machure computes MST of local subgraph
- throw out edge of ta heaviest edge on some cycle un local subgraph
- Any such edge y not in global MST either

Algorithm MST (V, E)
If $|E|<S$ then compute $T^{*}=\operatorname{MST}(E)$ return T^{*}

$$
l=2|E| / \mathrm{s}
$$

Partition E unto $E_{1} \ldots E_{l}$ where $\left|E_{i}\right|<S$
using hash fr $h: E \rightarrow\{1,2 \ldots l\}$
In parallel: compute T_{i} : min. spanning tree on $G\left(V, E_{i}\right)$ return $\operatorname{MST}(V, U T L)$

Each iteration reduces input size by n^{ε}
Lemma: Algo MST (V, E) terminates after $\left\lceil\frac{c}{\varepsilon}\right\rceil$ iterations \& returns MST

Pf: Correctness (follows from earlier ducussion)
random partitioning \Rightarrow wh. p. each machine gets S edges

$$
\begin{aligned}
& \left\lvert\, E\left[\left|E_{U}\right|\right]=\frac{s}{2} \cdot\right. \text { whip }^{0}\left|E_{2}\right|<S \\
& \text { (Chernoff) } \\
& \left|U T_{i}\right| \leq \ell \cdot(n-1) \leq \frac{2|E|}{s} \cdot n=O\left(\frac{|E|}{n^{\varepsilon}}\right)
\end{aligned}
$$

Terminates in $\left\lceil\frac{c}{\varepsilon}\right\rceil$ rounds
Matching:
Maximum Matching
Maximal Matching: \mid Maximal Matching $\left|\geqslant \frac{1}{2}\right|$ Maximum Matching \mid

Idea: put subset $E \subseteq E$ on single mackure
Find maximal matching
Remove matched verities from graph
Continue til remaining edges foot on single machine
E^{\prime} : randomly selected: $\left|E^{\prime}\right| \leq S$
\# edges decreases by $\sim n^{\varepsilon}$ in each round
Algorithm
Machine 0 is free
Edges dutubuted amongst machines $1 \ldots M$
$G_{r}\left(V, E_{r}\right)$: graph at round $r \in\{0, \ldots R\}$
G_{0} : input graph
In each round r :

1. $m=\left|E_{r}\right|$
2. For $i \in\{1, \ldots M\} \begin{aligned} & \text { machine i marks each local edge } \\ & \text { inaptly } \\ & \text { w. prob. } \\ & p=n^{1+\varepsilon} / 2 \mathrm{~m}\end{aligned}$
3. For $i \in\{1 \ldots M\}$ machine C sends marked edges to machine 0
4. Machine ∂ computes maximal matching M_{r} on marked edges, announces matched vertices to machines 1 to M
5. For $[6\{1, \ldots M\}$, mackne L discards any local edge that has a matched vertex as an end pt.
Thu: Algorithm terminates in $O\left(\frac{c}{\varepsilon}\right)$ rounds
Lemma: w.h.p. \#marked edges fit onto single machine Edger sampled w. prob $i=\frac{n^{1 \tau \varepsilon}}{2 m}$
E[fmarked edges]:mp $=\frac{n^{1+\varepsilon}}{2}$
Apply Cherrotf.
Lemma: W.h.p. \# remaining edges $\leq \frac{4 m}{n^{\varepsilon}}$
Pf: I: unmatched vertices at and of round
No marked edge between any par of vertues in I If 7 marked edge $\{u, v\}$, at least she of u, v will be matched. Contradiction
Consider arbitrary subset I of vertices wt eh $\geqslant \frac{4 m}{n^{\varepsilon}}$ induced edges
$P[$ All induced edges in J unmarked $] \leqslant(1-P)^{\frac{4 m}{n \varepsilon}} \quad\left[\begin{array}{l}\text { Recall } \\ P=\frac{n^{1+\varepsilon}}{2 m}\end{array}\right]$

$$
\leqslant e^{-p \cdot \frac{4 m}{n^{\varepsilon}}}=e^{-2 n}
$$

Union bound over all such sets J (cot most 2^{n} such)
$\operatorname{Pr}\left[7\right.$ set with $\geqslant \frac{4 m}{n^{\varepsilon}}$ induced edges, st. all un marked]

$$
\leqslant 2^{n} \cdot e^{-2 n}
$$

\Rightarrow At most $\frac{4 m}{n^{\varepsilon}}$ remaining edges at end of round w.h p.
Lemma: Algo terminates in $R=O\left(\frac{c}{\varepsilon}\right)$ rounds $O(\log n)$ rounds with near lear memory
[Ginffan et d'18]: O(1) approx in $O(\log \log n)$ rounds w. near bear memory
[Gheffan, u(tto ' 19]: $O(1)$ approx in $\partial(\sqrt{\log \Delta})$ wi eh n^{α} memory $\alpha \in(0,1)$
$O(1)$ approx can be turned into $(1+\varepsilon)$ approx using seas of [McGregor '05] $\sim\left(\frac{1}{\varepsilon}\right)^{1 / \varepsilon}$ overhead.

