Connectivity and MST
last time: memory per machine $M=n^{1+\varepsilon}$ today:

$$
\begin{aligned}
& M=n^{\alpha} \quad \alpha \in(0,1) \\
& M=\widetilde{o}(n)
\end{aligned}
$$

$$
|V|=n \quad|E|=m
$$

Each node v maintain label $l(v)$
$L_{v} \subseteq V$: set of vertices labeled v - connected Component containing v
$\Gamma(v)$: neighbor of v

$$
\begin{aligned}
& S \subseteq V, \Gamma(S)=\bigcup_{v \in S} f_{(v)}^{n e g} \\
& \Gamma^{\prime}(v) \triangleq \Gamma\left(L_{v}\right)
\end{aligned}
$$

1. Every node $u \in V$ active with label $\ell(u)=u$
2. For $i=1,2,3 \ldots O(\log n)$ do
(a) Call each active node a leader w- prob. $1 / 2$
(b) For every active non-leader ω find $\omega^{*}=\min \left\{l(v) \mid v \in \Gamma^{\prime}(\omega)\right\}$ $l(v)$ leader
(c) If wit not empty, mark w passive relabel each node wis label ω by w^{*}

Note: Label is not necessarily mun. node in component!

Lemma: At any point in algorithm, $\forall u \in V$ there is a path from u to $l(u)$
Pf: By induction on \# rounds.
True initially:
Suppose thin y true at beglaning of round If $l(u)$ does not change, 7 path from u to $l(u)$
Suppose $l(u)=\omega$ initially relabeled to $l(u)=w^{\prime}$

Corollary: If at any point, 2 nodes s \& t have same label then 7 path from s to t in G

Lemma: Every connected component of G has unique labe after $O(\log n)$ rounds w.h.p.
Pf Will show that within each connected component, \# labels decreases by constant factor in expectation in every round, tue event vertex hal same label
\# labels = \#connected comp = \#active nodes
Fix active node u If component containing u has more than one $7 v^{\prime} \in \Gamma^{\prime}(u)$ with label different from u with prob. $\frac{1}{4}$, active node v is selected as leader, u is a non-leader

$\Rightarrow u$ will be relabeled and become passive.
Prob.[Active node survives a round $\left.\left\lvert\, \begin{array}{l}7 \text { more than one label } \\ \text { in conn. component }\end{array}\right.\right] \leq \frac{3}{4}$
How to implement in MPC?
memory $M=n^{\alpha} \quad \alpha<1$
$n^{1-\alpha}$ machines for vertex status: label

$$
\begin{aligned}
& \text { active /-passive } \\
& \text { leader }
\end{aligned} \text { non -le }
$$

$\begin{array}{ll}\text { active/-passive } \\ \text { leader } & \text { non-leader }\end{array}$
For each active non-leader node w find $\omega^{*}=\operatorname{men}\left\{l(v) \mid v \in \Gamma^{\prime}(w), l(v)\right.$ leader $\}$
For each edge $\{u, v\}$, if $l(u) \neq l(v), l(u)$ non-leader
$l(v)$ is potential label for $l(u)$
For each active non-leader node w fist compute \# candidate labels (w. duplicates)

then compute minimum over set of candidate labels.
$O\left(\frac{1}{2}\right)$ rounds
Broadcast new labels to all nodes in $O\left(\frac{1}{\alpha}\right)$ rounds
Overall: $O\left(\frac{\log n}{\alpha}\right)$ rounds in MPC model w. memory n^{α}

MST: Borurka's algorithm ['26]
Maintain connected components
Repeat $O(\log n)$ times:
Choose cheapest edge out of each current component \& merge components

Problem: merging could take large \# rounds!
Fix: use idea of random leaders.
Mark each component leader w. prob $\frac{1}{2}$
Each non-leader chooses cheapest outgoing edges only if it goes to leader component Cannot have long cham of merges.

Open Problem:
Conjecture: Connectivity requires $\Omega(\log n)$ rounds which memory $h^{\alpha} \quad \alpha<1$
Hard Case? Diutungush between cycle on n nodes vs. 2 codes on $\frac{n}{2}$ nodes
$O(1)$ rounds which $\check{\sigma}(n)$ memory
Clam: Sorting in $O\left(\frac{1}{\alpha}\right)$ rounds with n^{α} memory
Idea: Choose h^{α} pivots at random Sort pivots on one machine divide into subproblem of size $\sim n^{1-\alpha}$ each recuse on subproblems in parallel $O\left(\frac{1}{2}\right)$ rounds

Sort edges in increasing order

$$
w\left(e_{1}\right) \leq w\left(e_{2}\right) \quad \cdots \leq w\left(e_{m}\right)
$$

Kruskal: examen edges in thy order
Observation: Edge e_{i} is in MST of its exdpocits not in the same connected component in graph with $\left\{e_{1} \ldots e_{l-1}\right\}$

Grove edges into chunks of n edges Each chunk furs on one machine Process chunks simultanconlly

For $i=\left\{1 \ldots \frac{m}{n}\right\}$
$E_{i}=\left\{e_{(1-1) n+1} \ldots e_{\text {in }}\right\}$ the chink
$E_{i}^{\prime}=\bigcup_{j=1}^{i} E_{i} \quad$ union of E_{1} to E_{i}
F_{i}^{\prime} : front of connected components from $E_{i}{ }^{\prime}$ F_{0}^{\prime} : all vertices uolated

Any edge $\{u, v\} \in E_{i}$ is in MST if components of $u \& v$ are different in
$F_{i-1}^{\prime} \cup\left\{\right.$ edges preceding $\{u, v\}$ in $\left.E_{\imath}\right\}$
Note: Single machine can hold $E_{i} \& F_{i-1}^{\prime}$ and make decssom for chunk E_{i}
Need. Algo to compute connected components in O(1) rounds.

We already have such an algo! via lo-sampleng sketches
Can be implemented in $O(1)$ rounds of MPC
whet $n \cdot$ polylog(n) memory - enough to store sketches of all vertices and run connectivity olgo on single machine

