

Lemma: At any point in algorithm,
$$\forall u \in V$$

there is a path from u to $L(u)$
Pf: By induction on $\#$ rounds.
True initially:
Suppose this is true at beginning of round
If $l(u)$ does not change, \nexists path from u to $L(u)$
Suppose $l(u) = w$ initially
relabeled to $l(u) = w'$

Corollary: If at any point, 2 nodes s & t have some labol then I path from s to t in G

Lemma: Every connected component of G has unque labol after O(log n) rounds w.h.p.

Lu

$$\Rightarrow u \quad uul be relabeled and become passive.$$
Prob. [Dutive hode survives a round [4] more then one habel] $\leq \frac{3}{4}$
How to implement in MPC?
Memory $M = n^{\alpha} \quad \alpha < 1$
 $n^{1-\alpha}$ machenes for vertex status : Label
 $\alpha tive [passive
leader / non-leader
for each active non-leader node W
find $w^{\alpha} = min \{l(v)\} \ v \in \Gamma'(w), l(v) leader]$
for each active non-leader node W
find $w^{\alpha} = min \{l(v)\} \ v \in \Gamma'(w), l(v) leader]$
for each active non-leader node W
fut compute π is a label for $l(u)$
for each active non-leader node W
fut compute π candidate labels (w. depleater)
fut compute π candidate labels (w. depleater)
for each active non-leader node W
fut compute π candidate labels (w. depleater)
for each active non-leader node W
fut compute π candidate labels (w. depleater)
Main compute menimum over set of candidate labels.
 $O(\frac{1}{2})$ rounds
Diradicest new labels is all noder in $O(\frac{1}{2})$ rounds
Over all: $O(\frac{\log n}{2})$ mends in MPC model w. hemory n^{α}
MST: Bornvka's algorithm ['2c]
Maintain connected components
Repeat $O(\log n)$ times:
Upose cheapest edge out of each current component
 λ marger components$

000000000Koblem merging could take large # rounds ! Fix: use idea of random leaders. Mark each component leader w. prob 1/2 Each non-leader chooses cheapert ontgoing edges Only if it goes to leader component Cannot have long chain of merges. Open Problem: Conjecture: Connectivity requires I (log n) rounds wich memory had a < 1 Hard Case? Distinguish between cycle on n nodes vs. 2 cycles on $\frac{n}{2}$ nodes O(1) rounds wich $\delta(n)$ memory Claim: Sorting in O(1) rounds with no memory Idea: Choose he pivots at random Sort pivots an one machine divide into subproblems of size ~ h' each recurse on subproblems in parallel O(1) rounds Sort edges in increasing order $w(e_i) \leq w(e_2) \leq w(e_m)$ Kruskal: examines edges in this order Observation: Edge ei is in MST 46 its endpounds not in the same connected component in graph cuch fer -- ei-17