Non-sketch algorithm: ① For i= 1 to K, let Fi be spanning forest of (V, E\UFj) ② Then (V, FiV-. UFk) is K-edge connected iff G(V,E) & K-edge connected iff G(V,E) & K-edge connected <u>Correctness</u>: For any cut, Either: every Fi contains an edge across this cut <u>OR</u> FiU-... Fi-1 already contain all edges across the cut <u>Hence</u>: ¹ FiU-... UFK dass not contain all edges across the cut, it contains at least K of them. Such a set of edges \triangleq K-skeleton

Emulation via sketches:
Compute sketches in streaming fashion
then emulate algorithm on compressed repⁿ
If we have sketch
$$A(G)$$
, need $A(G-F)$
F: identified edges
 $A(G-F) = A(G) - A(F)$

() In one pass, compute
$$\mathcal{L}'(G)$$
 ... $\mathcal{L}'(G)$
is hiddly sketchen for spanning forest
(2) fost-processing: emulate original algo.
For $i \in (k]$ construct spanning forest F_i of
 $(V, E \setminus F_i - UF_{i-1})$ using
 $\mathcal{A}^i (G - F_i - F_{z-1} - F_{i-1}) = \mathcal{A}^i(G) - \overset{i}{\Sigma} \mathcal{A}_i(F_i)$
Space: for each spanning forest sketch: $O(n polylog n)$
 k -connectivity: $(kn polylog n)$
Min-Cut exactly upto k
larger values of men-cut?
Introduce some Machinery
Graph Spansification:
 $sporse rep' of graph that allows estimation of
connectivity properties of original graph
[Benczür, kanger] Cut-sponsition
Weighted subgraph H is a (ITE)-cut spansifier of graph G f
 $\lambda_A(H) = (I \pm \varepsilon) \lambda_A(G) \quad \forall A \subset V$
 $\lambda_A(G)$ and $\lambda_A(H)$ is which allows extended in G and H
 $\left(A = a + a + b + a + cut (A, \overline{A}) = \lambda_A(G) + a + cut (A, \overline{A}) = \lambda_A(H) - (A = a + a + cut (A, \overline{A})) = \lambda_A(H)$
[Spiclman, Teng]: spectral spansification based on approximation
of Laplacian of graph$

Laplacian: Laplacian of undirected weighted graph
$$H(V, E, w)$$

is matrix $L_H \in IR^{NM}$
 $L_H(i, j) = \int -W(i, j)$ if j
 $Z W(i, K) \notin (=j)$
 $(i, K) \in E$
 $W(i, j)$: $wt. d edge (i, j)$
 $= 0$ if no such edge
Spectral Sparsifier: Weighted subgraph H is a ($1tc$)-spectral
 $Sparsifier of G \notin X^T L_H X = (12c) x^T L_G X \neq X \in IR^n$
 $L_G, L_H : Laplacians of G & H$
 $Chrowvalion x^T L_G X = Z W_{i,j} (x_1 - x_j)^2$
 $(i, j) \in E$
 $x^T L_G X = Z W_{i,j} (x_1 - x_j)^2$
 $(i, j) \in E$
 $x^T L_G X = Z W_{i,j} (x_1 - x_j)^2$
 $(i, j) \in E$
 $x^T L_G X = Z W_{i,j} (x_1 - x_j)^2$
 $X^T L_G X = Z W_{i,j} (x_1 - x_j)^2$
 $X^T L_G X = Z W_{i,j} (x_1 - x_j)^2$
 $X^T L_G X = Z W_{i,j} (x_1 - x_j)^2$
 $X^T M_G X = X^T L_G X = W (E_G(S, T))$
 $S = \tilde{j} : : x_i = 1$
Spansification Via sampling:
(I) Sample each edge wich probability pe
(2) Weight each sampled edge $\frac{1}{P_E}$

Size of cut preserved in expectation If per large enough => high probability bounds

Back to min cut:
Kangen sampling + K-skeleton construction
Gi: graph sampled from G by including each
edge w. prob
$$\frac{1}{2^i}$$

Hi = skeleton k (G) $K = \frac{3C_i \log n}{\epsilon^{2^i}}$
Claim: j = min ξ_i : mincut (Hi) < K $\frac{1}{2}$
 2^i mincut (Hj) = (1±\epsilon) λ
Proof: Recall Kanger's Condⁿ

$$\frac{1}{2^{i}} = \operatorname{Pe} \ge \frac{C_{i} \log n}{N \epsilon^{2}} = 9$$

$$i \le \lfloor \log_{2} \frac{1}{9} \rfloor$$

$$2^{i} \cdot \operatorname{Min} \operatorname{cut} (G_{i}) = (1 \pm \epsilon) \operatorname{Min} \operatorname{cut} (G)$$

$$\operatorname{For} \quad i = \lfloor \log_{2} \frac{1}{9} \rfloor$$

If muncut (G) achieved for
$$(A,\overline{A})$$

 $E[[E_{G_{i}}(A,\overline{A})]] = \frac{\lambda}{2^{t}} \leq 2q_{i}\lambda = \frac{2c_{i}\log n}{\epsilon^{2}}$
wh.p. $|E_{G_{i}}(A,\overline{A})| \leq \frac{3c_{i}\log n}{\epsilon^{2}} = K$
wh.p. muncut (Gi) < K

[Batson, Spichman, Svivastave]
Deterministic algorithm to get
$$(t \in)$$
-spectral sparsifier
with $O(\frac{n}{\epsilon^2})$ edges

Hierarchical partition of stream of m edges
partition stream into
$$t = \frac{m}{size(\gamma)}$$
 segments of size(γ)
edges
 $G_{i}^{0} : graph corresponding to the segment of edges
 $G_{i}^{1} = G_{2i-1}^{j-1} \cup G_{2i}^{j-1}$
 $G_{i}^{0} = G_{2}^{0} = 0$
 $G_{i}^{0} = G_{2}^{0} = 0$
For each $G_{i}^{1} : weighted subgraph Hi1 using
spansification edge A
 $H_{i}^{0} = G_{i}^{0} = H_{i}^{1} = A(H_{2i-1}^{j-1} \cup H_{2i}^{j-1})$
 $H_{i}^{1} is (H_{i}\gamma)^{1}$ spectral spangier of G_{i}^{1}
 $\Rightarrow (H_{i}\gamma)^{1} b_{2i}t$ (Here) - spectral spansifier
At most $O(size(\gamma), log_{2}t) = O(\frac{n log^{2}n}{t})$ edges at any
time$$