
CS 368 (Stanford, Spring 2022) Homework 2
Due: May 1, 2022, 11:59pm

Policy: You are permitted to discuss and collaborate on the homework but you must
write up your solutions on your own or as a group of two. Furthermore, you need to cite
your collaborators and/or any sources that you consulted. No late submissions are allowed.
There will be no late days. All homework submissions are subject to the Stanford Honor
Code. For all assignments, we are allowing group submissions for groups of 1 or 2.
Submission: We will use Gradescope for homework submissions. You must typeset your
write-up (we recommend LaTeX via Overleaf). If you are working as a group of two, only
one group member needs to submit the assignment. When submitting, please remember
to add all group member names on Gradescope.
Length of submissions: Please include as much of the calculations that show that you
understand everything that is going through the answer. As a rule of thumb after you have
solved the problem, try to identify what are the main steps taken and critical points of
a proof and include them. Unnecessary long answers to questions will be penalized. The
points next to each question are indicative of the hardness/length of the proof.

1 Sketching for Faster Updates [40 points]

The AMS sketch from class for F2 moment estimation can be thought of as picking a random
m × n matrix A with entries ±1/

√
m for m = O(ε−2), and estimating ‖f ‖2

2 as ‖Af ‖2
2. One

can show that with at least 2/3 probability,

(1− ε)‖f ‖2
2 ≤ ‖Af ‖2

2 ≤ (1 + ε)‖f ‖2
2 (1)

Here we’re not doing the full median-of-means estimate. Instead, we merely compute the
mean of m independent estimates, so we don’t drive the error probability down.

In this problem you will explore a different way of estimating F2, inspired by Count-Sketch.
Imagine picking A ∈ {±1, 0}m×n differently, for each i ∈ {1, . . . , n} we pick a row hi ∈
[m] uniformly at random and set Ahi ,i = ±1 (the sign is chosen uniformly at random from
{−1, 1}), and all other entries of the i-th column are set to 0. This A has the advantage
that in turnstile streams (where each update vector ∆x can contain a non-zero integer only
at one location) we can process updates in constant time, independent of ε. Show that using
this A still satisfies the conditions of equation (1) with 2/3 probability for m = O(ε−2).

2 Approximate Frequency Estimation [30 points]

Consider the following algorithm. We prove an error guarantee in the following parts. It might
be helpful to look at how the counter associated with an element changes as the element
gets added to and removed from the bins.

1

Algorithm 1
Input: stream i1, i2, . . . , im ∈ [n], number of bins k .
initialize each bin b ∈ [k] with an element eb ← ∅ (initially null) and a counter cb ← 0.
for each element i` in the stream do

if i` is in a bin b then
increment b’s counter cb ← cb + 1

else
find the bucket b` with the smallest counter value (breaking ties arbitrarily)
replace the current element eb` ← i`
increment its counter cb` ← cb` + 1.

Output: for each i ∈ [n] output f̂i = cb if eb = i and 0 otherwise.

(a) [15 points] Consider an element i with f̂i = 0. Show that the true frequency fi is such
that 0 ≤ fi < m

k
. This would imply |f̂i − fi | < m

k
.

(b) [15 points] Consider an element i with f̂i > 0. Show that |f̂i − fi | < m
k
.

3 Reducing Randomness via Nisan’s Generator1 [15 points]

Note: The description of this problem is long, but what you actually need to do is very little
compared to the length of the description. This is mostly designed to supplement the in-class
discussion of the use of Nisan’s pseudorandom generator in the context of streaming.

We have seen a collection of algorithms for estimating the `p norm of the n-dimensional
vector x induced by the stream, for p ∈ (0, 2]. The idea was to calculate a “linear sketch”
Πx = [Z1 . . . Zk], where Π was an k × n random matrix, with i.i.d. entries ri j selected from
a p-stable distribution. After calculating Πx , the algorithm outputs

median[|Z1|, · · · , |Zk |]/C(p)

as an estimator of ‖x‖p, where C(p) denotes some scaling factor that depends only on p.

For the purpose of this problem, we will focus on the decision version of the algorithm, which
checks whether

median[|Z1|, · · · , |Zk |]/C(p) ≥ T (2)

for some threshold T . We assume that p = 2, in which case the entries of Π can be selected
from Gaussian distribution N (0, 1). We also assume that the entries of x always remain
integers from {−M . . .M} for some M = nO(1), i.e., they have values polynomial in the
dimension n.

There are two issues regarding the space requirement:
1Thanks to Piotr Indyk and Jelani Nelson for this question.

2

• Discretization: given that the algorithm space is measured in bits, we need to make sure
that each ri j has bounded precision. Dealing with this issue is straightforward, as we can
modify the random variables so that their values fall into an interval [−c

√
log n . . . c

√
log n],

and are multiples of of 1/nc , for some c = O(1). The analysis of the modified algorithm
remains essentially unchanged, modulo minor increase in the approximation error and
failure probability. In what follows we assume that ri j are already generated in this way,
and therefore need only b = O(log n) bits of representation.

• Pseudo-randomness: even if r ′i js are discrete, we cannot afford to store all of them
in memory, as this would require knb bits of storage. Instead, they can be generated
“on the fly” using a pseudorandom generator, i.e., there is an efficiently computable
mapping G : {0, 1}L → {{0, 1}b}nk such that we can set ri j = G(v)i j , where v is a
“random seed” selected from {0, 1}L uniformly at random. Formalizing and optimizing
this step is the focus of this problem.

We will use the pseudo-random generator for bounded space due to Nisan [1]. Consider a
class of (S, b)-automata Q, that have 2S states and read sequences of symbols from {0, 1}b,
i.e., operate over an alphabet of size 2b. Such automata are defined by:

• A transition function Q(s, a), which describe the state the automaton moves to from
state s after reading a,

• An initial state start, and

• A set of accepting states Acc .

Such automata can model any deterministic computation device that processes a sequence
u of symbols from {0, 1}b in space S. We use Q(u) to denote the state reached by the
automaton after reading u, starting from start.

Nisan’s generator G has the following wonderful properties. Suppose that the automaton is
applied to sequences of length R. Then:

• The seed length L of G is equal to O(S logR), assuming b = O(S).

• It ε-fools any (S, b)-automaton Q , i.e.,

|Pru∈({0,1}b)R [Q(u) ∈ Acc]− Prv∈{0,1}L[Q(G(v)) ∈ Acc]| ≤ ε

for ε = 2−Ω(S).

Note that in the above definition, the input to Q consists of (pseudo)-random bits, which
are “tested” by Q. Nisan’s generator is designed to ε-fool all such tests, despite generating
randomness from a relatively small truly random seed.

To use Nisan’s generator in our streaming algorithm, we need to model the algorithm as a
finite automaton reading the random entries of the matrix Π and producing some decision in
the end. Then we use the properties of the generator to argue that replacing truly random
Π by a pseudorandomly generated version does not (significantly) alter the behavior of the
algorithm.

3

The computation specified in Equation (2) can be performed by an automaton Q that reads
the entries r1,1, . . . , r1,n, r2,1, . . . , r2,n, . . . rk,n of Π (i.e., in the row-wise order), computes the
vector [Z1, · · · , Zk], evaluates the median and accepts if the result is at least T . (Note that
Q is parameterized by the vector x , i.e., x is not an input to Q!).

Finally, we are ready to state the problems:

(a) [5 points] Observe that Q can be implemented so that S = O(k log n). Calculate the
length of the seed L required to 2−Ω(S)-fool such automata Q.

(b) [10 points] Show a better implementation of Q that requires only S = O(log k+log n).
Calculate the length of the seed L required to 2−Ω(S)-fool such automata Q.

4 Sparse Recovery using Count-Min Sketches [40 points]

In the sparse recovery problem, we want to find a k-sparse vector x̂ (i.e., having at most k
nonzero entries) that minimizes the error ‖x− x̂‖q given the linear sketch Ax . In this problem,
we focus on minimizing the `1 error ‖x − x̂‖1. We assume A is chosen at random from some
distribution specified below (inspired by the Count-Min sketch) and show that some recovery
algorithms work with high probability. Recall ‖x‖q = (

∑
i |xi |q)1/q for a vector x .

We consider matrix A generated in the following way. Let w be a parameter (specified later)
and H be the set of all hash functions h : {1, . . . , n} → {1, . . . , w}. For each hash function
h ∈ H, let A(h) denote the w × n matrix with 0/1 entries where (A(h))j i is equal to 1
if j = h(i) and 0 if otherwise. For d hash functions h1, . . . , hd chosen independently and
uniformly at random from H, we define A to be a vertical concatenation of A(h1), . . . , A(hd).
The number of rows in A is equal to m = wd and the number of columns is equal to n. In
this problem, we ignore the issue of representing the hash functions (and hence the matrix
A) in small space. This can be fixed in standard ways.

Intuitively speaking, for a fixed value of i and hash function hl , the coordinate of the sketch
(Ax)(l−1)w+hl (i) is equal to the sum

∑
t:hl (t)=hl (i)

xt which is the sum of xi and some contribu-
tions from other xt ’s. We want to aggregate these coordinates over different hl to obtain an
approximation of xi .

Given a vector x , we define Errkq(x) to be the smallest `q approximation error mink-sparse x ′ ‖x−
x ′‖q where x ′ ranges over all k-sparse vectors, i.e., those having at most k nonzero entries.
Note for any value of q, ‖x − x̂‖q is minimized when x̂ consists of the k largest (in magni-
tude) coordinates of x ; that is, x̂i equals xi for these k largest coordinates and 0 for other
coordinates. The smallest possible error for the sparse recovery problem is Errkq(x).

In what follows, assume ε ∈ (0, 1). For Parts (a) and (b), assume x ≥ 0, that is, all
the coordinates are nonnegative. Consider the Count-Min algorithm that computes the ap-
proximation x∗ where x∗i = minl(A(hl)x)hl (i). Let i1, i2, . . . be the ordering of [n] such that
|xi1| ≥ · · · ≥ |xin |. The k largest (in magnitude) coordinates are xi1, . . . , xik .

4

(a) [10 points] For any i , argue that Pr
(

(A(hl)x)hl (i) − xi ≥ ε
k

Errk1
)
≤ Pr

(
hl(i) ∈

hl({i1, . . . , ik} \ {i})
)

+ Pr
(∑

r>k:hl (ir)=hl (i),ir 6=i xir ≥
ε
k

Errk1
)
. Note hl({i1, . . . , ik} \ {i})

)
is the set of hash values for elements in the set {i1, . . . , ik}\{i}. For w = 4k

ε
, show that

Pr
(

(A(hl)x)hl (i) − xi ≥ ε
k

Errk1
)
≤ 1

2
. Hint: the Markov’s inequality might be useful.

(b) [5 points] Given Part a, show that Pr[x∗i − xi ≥ ε
k

Errk1] ≤ 1
2d
. For an appropriately

chosen d = O(log n), show that ‖x∗ − x‖∞ ≤ ε
k

Errk1 with high probability (i.e., with a
failure probability of the form 1

nc
for some constant c).

For Parts (c) and (d), assume general x (so, a coordinate can be negative). The count-min
algorithm and the above analysis would not work because the xi ’s can be negative.

(c) [15 points] For general x , design and analyze a different approximation scheme with
d = O(log n) that given Ax , returns an approximation x∗ such that ‖x∗− x‖∞ ≤ ε

k
Errk1

with high probability. Hint: You do not want to use min to aggregate. You can adapt
the same line of reasoning outlined in Parts a and b with some changes. It might be
useful to show for an appropriately chosen w , Pr

(
|(A(hl)x)hl (i) − xi | ≥ ε

k
Errk1

)
is at

most some constant strictly less than 1
2
. The Chernoff bound might be useful.

Part (c) implies that for any x , given Ax , we can recover x∗ such that ‖x∗ − x‖∞ ≤ ε
k

Errk1
with high probability. Given this, we can solve the sparse recovery problem.

(d) [10 points] Let x̂ be consisting of the k largest (in magnitude) coordinates of the
recovered x∗ (and 0’s elsewhere) satisfying ‖x∗− x‖∞ ≤ ε

k
Errk1. Show that ‖x − x̂‖1 ≤

(1 + 3ε) Errk1. Hint: It might be helpful to use that ‖x̂S‖1 ≤ ‖x̂Ŝ‖1 where S is the set
of the k largest (in magnitude) coordinates of x and Ŝ is the support of x̂ .

References

[1] Noam Nisan. Pseudorandom Generators for Space-Bounded Computation. Combina-
torica, 12(4):449-461, 1992.

5

	Sketching for Faster Updates [40 points]
	Approximate Frequency Estimation [30 points]
	Reducing Randomness via Nisan's GeneratorThanks to Piotr Indyk and Jelani Nelson for this question. [15 points]
	Sparse Recovery using Count-Min Sketches [40 points]

