CS 368 (Stanford, Spring 2022) Homework 3
Due: May 15, 2022, 11:59pm

Policy: You are permitted to discuss and collaborate on the homework but you must
write up your solutions on your own or as a group of two. Furthermore, you need to cite
your collaborators and/or any sources that you consulted. No late submissions are allowed.
There will be no late days. All homework submissions are subject to the Stanford Honor
Code. For all assignments, we are allowing group submissions for groups of 1 or 2.
Submission: We will use Gradescope for homework submissions. You must typeset your
write-up (we recommend LaTeX via Overleaf). If you are working as a group of two, only
one group member needs to submit the assignment. When submitting, please remember
to add all group member names on Gradescope.

Length of submissions: Please include as much of the calculations that show that you
understand everything that is going through the answer. As a rule of thumb after you have
solved the problem, try to identify what are the main steps taken and critical points of
a proof and include them. Unnecessary long answers to questions will be penalized. The
points next to each question are indicative of the hardness/length of the proof.

1 Lower bounds for existence of triangles [25 points]

Consider a graph stream describing an unweighted, undirected n-vertex graph G. Prove that
Q(n?) space is required to determine, in one pass, whether or not G contains a triangle, even
with randomization allowed.

2 Lower bounds for exact computation of F, [20 points]

Prove that computing F, exactly, in one pass with randomization allowed, requires Q(min{m, n})
space. Construct an appropriate “hard stream” of length m with universe size n, where
m = O(n), and show that Q(n) space is required on this stream. Then extend the result
to multiple passes, with randomization allowed. The lower bound for p passes should be

Q(min{m, n}/p).

3 Spanners for Weighted Graphs [45 points]

Recall that the distance estimation problem asks us to process a streamed graph G so that,
given any x, y € V(G), we can return a t-approximation of dg(x, y), i.e., an estimate d(x, y)
with the property:

de(x,y) < d(x,y) < t-ds(x,y).

Here, t is a fixed integer known beforehand. In class, we solved this using space O(n'*2/?)
by computing a subgraph H of G that happened to be a t-spanner.



(a) [20 points] Now suppose that the input graph is edge-weighted, with weights being
integers in [W]. Each token in the input stream is of the form (u, v, w,,), specifying
an edge (v, v) and its weight w,, € [W]. Distances in G are defined using weighted
shortest paths, i.e.,

de.w(x,y) := min {Z We : T is a path from x to y } .

ecT

Give an algorithm that processes G using space @(nHz/t logW) so that, given x,y €
V(G), we can then return a (2t)- approximation of dg ,(x,y). Give careful proofs of
the quality and space guarantees of your algorithm.

(b) [25 points] In class, we saw that even for the unweighted case, space Q(n'*?/?) is
necessary to preserve all distances up to a factor of t. What if we only care about the
max distance of a connected graph? The diameter of a graph G = (V, E) is defined as
diam(G) = max{ds(x,y) : x,y € V}, i.e., the largest vertex-to-vertex distance in the
graph. A real number d satisfying

diam(G) < d < a - diam(G)

is called an a-approximation to the diameter. Suppose that 1 < o < 1.5. Prove that, in
the vanilla graph streaming model, a 1-pass randomized algorithm that o~ approximates
the diameter of a connected graph must use €2(n) space. How does the result generalize
to p passes?

4 [, Sampling with Pairwise Independent Hash Functions
[45 points]

We revisit the problem of Ly sampling in which we uniformly sample an element / from the
support S of an input vector x. Recall, we are in the general framework of sketching where
we maintain a sketch Ax under increments and decrements of coordinates of x where x is a
n-dimensional vector and estimate some desired function from the sketch. Formally, we want
the probability Pr(/ = i) that / is returned satisfy

X1

Ix[lo

(14 0(¢)) ud ) ,

Pr(/=1i) € ((1 —O(e)) [

where |x;|° = 0 if x; = 0 and |x;|° = 1 otherwise. Note |S| = ||x]|o.

In class, we saw an Ly sampling sketch using fully random hash functions. In this problem, we
consider another Ly sampling sketch using a family H of pairwise independent hash functions
h : [n] — [m]. Recall that pairwise independence means for any xi,x, € [n] and values

Vi, y> €[m],
Pricn(h(x1) = y1 A h(x2) = y2) = Prien(h(x1) = y1) Praen(h(x2) = y2),
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and, also, for any x € [n] and y € [m], Praen(h(x) =y) = £.

Consider the following algorithm for a large enough constant ¢ and a constant ¢’ to be
chosen. Assume € € (0, %) and S # 0.

Algorithm 1

Input: € € (0, 3)
1. Forj=1,..., logand k=1,..., <, let he: [n] = {0, ..., 2/ —1} be hash functions
drawn from a pairwise independent hash family.
2. As we read input x (its increments/decrements), maintain for each hj’f:
Df € (1£0.1)|Ixslo for Sf = {i € S: h(i) =0}
Cjk - Z/esjk Xi
T =2 i i
3. Let j* be the largest j for which #{k : Df € 1+ 0.1} > 1.
4. Output Tj/CK for an arbitrary k for which DX € 1£0.1.

Strictly speaking, hash functions in Step 1 are being drawn from different hash families with

corresponding ranges for different values of j. For simplicity, assume each DJ’.‘ in Step 2 is

exactly in the interval (1 4 0.1)||xs«|lo with error probability of 0. Note that 1 4+ 0.1 denotes
J

the interval [0.9, 1.1], so (1 £ 0.1)||xs«||o denotes the interval [0.9 - ||xsk |0, 1.1 - ||Xs¢||o]-

(a) [15 points] Fix arbitrary j and k. For any i € S, note that Pr(hf(i) = 0) = . Show
that Pr(h&(i) = O A [SK| = 1) > L (1 - M) Conclude that Pr(hf(i) = 0 A |SK| =

2J

1) € [2% (1 — H;#) 2%] The wedge operator A denotes logical and. Hint: use the
union bound and pairwise independence.

lIx]lo

(b) [10 points] Let j be the unique integer j such that >~ € (5.¢€|. Forany > J and any
i € S, show that Pr(hk(i) = 0 | |SK| = 1) € ((1 —0(e)) L, (1 +O(e))m>. Note

Ix[lo’

this Is a conditional probability.

(c) [10 points] For an appropriately chosen ¢’, show that the above algorithm solves the

Lo sampling problem with some constant error probability strictly less than %

(d) [10 points] Using a well-known technique, design an algorithm that solves the Lq
sampling problem with the error probability at most § for any € € (0,2%) and § > 0.

2
What is the overall space requirement in terms of € and 67

5 Extra Problem: Bipartite Graphs (Do not turn in!)

A graph G is called bipartite if V(G) can be partitioned into two sets S and S€ such that all
edges lie between vertices of those two sets, that is, |Eg(S, S€)| = |E(G)|. Equivalently, there
exists a valid two coloring of the vertices, where a coloring is valid if there is no monochromatic



edge (i.e., with endpoints of the same color). Consider the vanilla graph streaming model
(with edge insertions only).

(a) [15 points] Give a deterministic algorithm that uses O(nlogn) space and decides
whether a graph is bipartite. Give a proof of correctness.

(b) [20 points] Show that any randomized one-pass streaming algorithm that decides
whether a graph is bipartite requires 2(n) space.

(c) [25 points] Given a undirected graph G, we define its bipartite double cover G=(V, E)
where V/ is a vertex set containing two copies vy, v, of every vertex v € V/(G), and E
is an edge set containing the edges {uy, v»} and {vi, s} for all edges {u, v} € E(G).
Prove that the graph G being bipartite is equivalent to

#Connected Components(G) = 2 - #Connected Components(G) .

Show how to use this fact to design a streaming algorithm to test whether a graph is
bipartite. Give the space requirements of your algorithm.
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